【题目】已知定义域为
的函数
对任意实数
,
满足:
,且
,
,并且当
时,
.给出如下结论:①函数
是偶函数;②函数
在
上单调递增;③函数
是以2为周期的周期函数;④
.其中正确的结论是( )
A.①②B.②③C.①④D.③④
科目:高中数学 来源: 题型:
【题目】设中心在原点,焦点在
轴上的椭圆
过点
,且离心率为
.
为
的右焦点,
为
上一点,
轴,
的半径为
.
(1)求
和
的方程;
(2)若直线
与
交于
两点,与
交于
两点,其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若在定义域内存在实数
,满足
,则称
为“
类函数”.
(1)已知函数
,试判断
是否为“
类函数”?并说明理由;
(2)设
是定义在
上的“
类函数”,求是实数
的最小值;
(3)若
为其定义域上的“
类函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入( )
![]()
A.
是偶数?,
? B.
是奇数?,
?
C.
是偶数?,
? D.
是奇数?,
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第二届中国国际进口博览会11月初在上海举行了,在这届进口博览会上,某高校派出的4人承担了连续5天的志愿者服务,若每天只安排一人且每人至少参加一天志愿服务,则甲参加2天志愿服务的概率为________(结果用数值表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,对任意
,点
都在函数
的图象上.
(1)求
,归纳数列
的通项公式(不必证明).
(2)将数列
依次按
项、
项、
项、
项、
项循环地分为
,![]()
,
,
,各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值.
(3)设
为数列
的前
项积,若不等式
对一切
都成立,其中
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家的学习兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下列数学问题的答案:已知数列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一项是
,接下来的两项是
,再接下来的三项是
,……,以此类推,求满足如下条件的最小整数
且该数列的前
项和为2的整数幂,那么该软件的激活码是________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两个函数
在公共定义域上恒有
,则称这两个函数是该区间上的“同步函数”.
(1)试判断
与
是否为公共定义域上的“同步函数”?
(2)已知函数
与
是公共区域上的“同步函数”,求实数
的取值范围;
(3)已知
与
在
上是“同步函数”,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记
为数列
的前
项和.“任意正整数
,均有
”是“
为递增数列”的
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com