精英家教网 > 高中数学 > 题目详情
已知数列{an},an=2n+1,那么此数列是(  )
分析:由题设条件an=2n+1可以得出an+1-an的符号,由此即可判断出数列的性质是一个递增数列.
解答:解:∵an=2n+1
∴an+1-an=2n+2-2n+1=2n+1>0
∴数列{an}是递增数列
故选A.
点评:本题考查数列的函数特性,由于数列是一个特殊的离散函数,故利用函数的特性来研究数列的项的变化规律是对数列研究的一个重要方面.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足
a1-1
2
+
a2-1
22
+…+
an-1
2n
=n2+n(n∈N*)

(I)求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a 1=
2
5
,且对任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(1)求证:数列{
1
an
}为等差数列,并求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a 1=
2
5
,且对任意n∈N+,都有
an
an+1
=
4an+2
an+1+2

(1)求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a n+an+1=
1
2
(n∈N+)
,a 1=-
1
2
,Sn是数列{an}的前n项和,则S2013=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}:,,,…,,…,其中a是大于零的常数,记{an}的前n项和为Sn,计算S1,S2,S3的值,由此推出计算Sn的公式,并用数学归纳法加以证明.

查看答案和解析>>

同步练习册答案