精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+d,f(1+d)),则$\frac{f(1+d)-f(1)}{d}$等于(  )
A.4B.4xC.4+2dD.4+2d2

分析 根据函数变化率f(1+d)-f(1)=[2(1+d)2-4]-(2×12-4)=2d2+4d,代入即可求得$\frac{f(1+d)-f(1)}{d}$的值.

解答 解:∵f(1+d)-f(1)=[2(1+d)2-4]-(2×12-4)=2d2+4d,
∴$\frac{f(1+d)-f(1)}{d}$=$\frac{2{d}^{2}+4d}{d}$=4+2d,
故答案选:C.

点评 本题简单的考察变化率的概念,关键是求出自变量的变化量,函数值的变化量,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=sinx,则f′($\frac{π}{3}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=a(x-1)2+lnx+1,g(x)=f(x)-x,其中a∈R.
(Ⅰ)当a=-$\frac{1}{4}$时,求函数f(x)的极值;
(Ⅱ)当a>0时,求函数g(x)的单调区间;
(Ⅲ)当x∈[1,+∞)时,若g(x)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=ex-2x,则下面判断正确的是(  )
A.有极小值,无极大值B.有极大值,无极小值
C.既有极小值,也有极大值D.既无极小值,也无极大值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=lnx+$\frac{a}{x}$,其中a>0.
(1)求函数f(x)的极值:
(2)若函数h(x)=f(x)-1在区间[$\frac{1}{e}$,e]上有两个不同的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x2+2x+a有零点的充要条件是a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一物体的运动方程为s=7t2+8,则其在t=$\frac{1}{14}$时的瞬时速度为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,边长为2的菱形ABCD中,∠A=60°,E、F分别是BC,DC的中点,G为 BF、DE的交点,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}$=$\overrightarrow b$
(1)试用$\overrightarrow a$,$\overrightarrow b$表示$\overrightarrow{AE}$,$\overrightarrow{BF}$,$\overrightarrow{CG}$;
(2)求$\overrightarrow{BF}$•$\overrightarrow{CG}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cos2ωx+$\sqrt{3}$sinωxcosωx(ω>0)的周期为π.
(Ⅰ)当x∈[0,$\frac{π}{2}$]时,求函数y=f(x)的值域;
(Ⅱ)已知△ABC的内角A,B,C对应的边分别为a,b,c,若f($\frac{A}{2}$)=1,且a=4,b+c=5,求△ABC的面积.

查看答案和解析>>

同步练习册答案