精英家教网 > 高中数学 > 题目详情
1.函数f(x)=ex-2x,则下面判断正确的是(  )
A.有极小值,无极大值B.有极大值,无极小值
C.既有极小值,也有极大值D.既无极小值,也无极大值

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而判断函数的极值.

解答 解:f′(x)=ex-2,
令f′(x)>0,解得:x>ln2,
令f′(x)<0,解得:x<ln2,
∴f(x)在(-∞,ln2)递减,在(ln2,+∞)递增,
∴f(x)有极小值,无极大值,
故选:A.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知(1+x)(x+$\frac{1}{{x}^{2}}$)n的展开式中没有常数项,则n的值可能是(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=\left\{\begin{array}{l}{2^{x-2}}-1,x≥0\\ x+2,x<0\end{array}\right,g(x)=\left\{\begin{array}{l}{x^2}-2x,x≥0\\ \frac{1}{x},x<0.\end{array}\right.$则函数f[g(x)]的所有零点之和是$\frac{1}{2}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2-lnx(a∈R)
(1)若函数y=f(x)图象上点(1,f(1))处的切线方程y=x+b(b∈R),求实数a,b的值;
(2)若y=f(x)在x=2处取得极值,求函数f(x)在区间[$\frac{1}{e}$,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A(3,2,1),B(1,-2,5),则线段AB中点坐标为(2,0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{ax}{4{x}^{2}+16}$,g(x)=($\frac{1}{2}$)|x-a|,其中a∈R.
(1)若y=g(x)在[1,$\frac{3}{2}$]上的最大值为$\frac{\sqrt{2}}{2}$,求实数a的值;
(2)设函数p(x)=$\left\{\begin{array}{l}{f(x),x≥2}\\{g(x),x<2}\end{array}\right.$,若对任意x1∈[2,+∞],总存在唯一的x2∈(-∞,2),使得p(x1)=p(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+d,f(1+d)),则$\frac{f(1+d)-f(1)}{d}$等于(  )
A.4B.4xC.4+2dD.4+2d2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的首项a1=1,前n项和为Sn,且Sn+1=2Sn+n+1(n∈N*
(1)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(2)求数列{nan+n}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图:一个质点在第一象限运动,在第一秒钟它由原点运动到点(0,1),而后接着按图所示在与x轴y轴平行的方向运动,且每秒移动一个单位长度,那么416秒后,这个质点所处的位置的坐标是(20,16).

查看答案和解析>>

同步练习册答案