6£®ÒÑÖªº¯Êýf£¨x£©=$\frac{ax}{4{x}^{2}+16}$£¬g£¨x£©=£¨$\frac{1}{2}$£©|x-a|£¬ÆäÖÐa¡ÊR£®
£¨1£©Èôy=g£¨x£©ÔÚ[1£¬$\frac{3}{2}$]ÉϵÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£¬ÇóʵÊýaµÄÖµ£»
£¨2£©É躯Êýp£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬x¡Ý2}\\{g£¨x£©£¬x£¼2}\end{array}\right.$£¬Èô¶ÔÈÎÒâx1¡Ê[2£¬+¡Þ]£¬×Ü´æÔÚΨһµÄx2¡Ê£¨-¡Þ£¬2£©£¬Ê¹µÃp£¨x1£©=p£¨x2£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©g£¨x£©=£¨$\frac{1}{2}$£©|x-a|=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x-a}£¬x¡Ýa}\\{£¨\frac{1}{2}£©^{a-x}£¬x£¼a}\end{array}\right.$£¬ÔÚ£¨-¡Þ£¬a£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨a£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»½áºÏy=g£¨x£©ÔÚ[1£¬$\frac{3}{2}$]ÉϵÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£¬·ÖÀàÌÖÂÛ£¬¿ÉµÃÂú×ãÌõ¼þµÄʵÊýaµÄÖµ£»
£¨2£©·Ö¢Ùa¡Ü0£¬¢Úa£¾0£¬Á½ÖÖÇé¿ö£¬·Ö±ðÇó³öÂú×ã¶ÔÈÎÒâx1¡Ê[2£¬+¡Þ]£¬×Ü´æÔÚΨһµÄx2¡Ê£¨-¡Þ£¬2£©£¬Ê¹µÃp£¨x1£©=p£¨x2£©³ÉÁ¢µÄʵÊýaµÄȡֵ£¬×ÛºÏÌÖÂÛ½á¹û£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©g£¨x£©=£¨$\frac{1}{2}$£©|x-a|=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x-a}£¬x¡Ýa}\\{£¨\frac{1}{2}£©^{a-x}£¬x£¼a}\end{array}\right.$£¬
ÔÚ£¨-¡Þ£¬a£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨a£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»
¢Ùµ±a¡Ü1ʱ£¬µ±x=1ʱ£¬gmax£¨x£©=$£¨\frac{1}{2}£©^{1-a}$=$\frac{\sqrt{2}}{2}$£¬½âµÃ£ºa=$\frac{1}{2}$£»
¢Úµ±1£¼a£¼$\frac{3}{2}$ʱ£¬µ±x=aʱ£¬gmax£¨x£©=$£¨\frac{1}{2}£©^{a-a}$=$\frac{\sqrt{2}}{2}$£¬Î޽⣻
¢Ûµ±a¡Ý$\frac{3}{2}$ʱ£¬µ±x=$\frac{3}{2}$ʱ£¬gmax£¨x£©=$£¨\frac{1}{2}£©^{a-\frac{3}{2}}$=$\frac{\sqrt{2}}{2}$£¬½âµÃ£ºa=2£»
×ÛÉÏËùÊö£¬a=2»ò$\frac{1}{2}$£®
£¨2£©¢ÙÈôa¡Ü0£¬ÓÉx1¡Ý2£¬p£¨x1£©=f£¨x1£©=$\frac{a{x}_{1}}{4{x}_{1}^{2}+16}$¡Ü0£¬
x2£¼2£¬p£¨x2£©=g£¨x2£©=$£¨\frac{1}{2}£©^{|{x}_{2}-a|}$£¾0£¬
¹Êp£¨x1£©=p£¨x2£©²»¿ÉÄܳÉÁ¢£»
¢ÚÈôa£¾0£¬µ±x£¾2ʱ£¬
p£¨x£©=f£¨x£©=$\frac{ax}{4{x}^{2}+16}$=$\frac{a}{4x+\frac{16}{x}}$£¬
¹Êp£¨x£©ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬
¹Êp£¨x1£©¡Ê£¨0£¬f£¨2£©]=£¨0£¬$\frac{a}{16}$]£»
1¡ãÈôa¡Ý2£¬ÓÉx£¼2ʱ£¬p£¨x£©=g£¨x£©=£¨$\frac{1}{2}$£©|x-a|=£¨$\frac{1}{2}$£©-x+a=£¨$\frac{1}{2}$£©a•2x£¬
¡àp£¨x£©ÔÚ£¨-¡Þ£¬2£©Éϵ¥µ÷µÝÔö£¬
´Ó¶øp£¨x2£©¡Ê£¨0£¬£¨$\frac{1}{2}$£©a-2£©£¬
Ҫʹp£¨x1£©=p£¨x2£©³ÉÁ¢£¬
Ö»Ðè$\frac{a}{16}$£¼£¨$\frac{1}{2}$£©a-2³ÉÁ¢¼´¿É£¬
ÓÉÓÚº¯Êýq£¨a£©=$\frac{a}{16}$-£¨$\frac{1}{2}$£©a-2ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇÒq£¨4£©=0£¬
¡à2¡Üa£¼4£»
2¡ãÈô0£¼a£¼2£¬ÓÉx£¼2ʱ£¬p£¨x£©=g£¨x£©=£¨$\frac{1}{2}$£©|x-a|=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x-a}£¬x¡Ýa}\\{£¨\frac{1}{2}£©^{a-x}£¬x£¼a}\end{array}\right.$£¬
¡àp£¨x£©ÔÚ£¨-¡Þ£¬a£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨a£¬2]Éϵ¥µ÷µÝ¼õ£»
´Ó¶øp£¨x2£©¡Ê£¨0£¬g£¨a£©]=£¨0£¬1]£¬
Ҫʹp£¨x1£©=p£¨x2£©³ÉÁ¢£¬
Ö»Ðè$\frac{a}{16}$£¼1£¬ÇÒ$\frac{a}{16}$¡Ü£¨$\frac{1}{2}$£©2-a³ÉÁ¢¼´¿É£¬
¼´$\frac{a}{16}$¡Ü£¨$\frac{1}{2}$£©2-a³ÉÁ¢¼´¿É£¬
ÓÉ0£¼a£¼2µÃ£º$\frac{a}{16}$£¼$\frac{1}{8}$£¬£¨$\frac{1}{2}$£©2-a£¾$\frac{1}{4}$£¬
¹Êµ±0£¼a£¼2ʱ£¬$\frac{a}{16}$¡Ü£¨$\frac{1}{2}$£©2-aºã³ÉÁ¢£®
×ÛÉÏËùÊö£º0£¼a£¼4£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǷֶκ¯ÊýµÄÓ¦Ó㬺¯ÊýµÄµ¥µ÷ÐÔ£¬·ÖÀàÌÖÂÛ˼Ï룬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬AB=16£¬AA1=8£¬BC=10£¬µãE£¬F ·Ö±ðÔÚA1B1C1D1ÉÏ£¬A1E=D1F=4£¬¹ýµãE£¬FµÄÆ½Ãæ¦ÁÓë´Ë³¤·½ÌåµÄÃæÏཻ£¬½»ÏßΧ³ÉÒ»¸öÕý·½ÐÎEFGH£®
£¨I£©ÔÚͼÖл­³öÕâ¸öÕý·½ÐÎEFGH£¨²»±ØËµÃ÷»­·¨ºÍÀíÓÉ£©£¬²¢ËµÃ÷G£¬HÔÚÀâÉϵľßÌå
λÖã»
£¨II£©ÇóÆ½Ãæ¦Á°Ñ¸Ã³¤·½Ìå·Ö³ÉµÄÁ½²¿·ÖÌå»ýµÄ±ÈÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈçͼËùʾ£¬Ò»¸öµ¥°ÚÒÔOAΪʼ±ß£¬OBΪÖձߵĽǦȣ¨-¦Ð£¼¦È£¼¦Ð£©Óëʱ¼ät£¨s£©Âú×㺯Êý¹ØÏµÊ½¦È=$\frac{1}{2}$sin£¨2t+$\frac{¦Ð}{2}$£©£¬Ôòµ±t=0ʱ£¬½Ç¦ÈµÄ´óС¼°µ¥°ÚƵÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$£¬$\frac{1}{¦Ð}$B£®2£¬$\frac{1}{¦Ð}$C£®$\frac{1}{2}$£¬¦ÐD£®2£¬¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ö±Ïßax+by=ab£¨a£¾0£¬b£¼0£©²»¾­¹ýµÚËÄÏóÏÞ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®º¯Êýf£¨x£©=ex-2x£¬ÔòÏÂÃæÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Óм«Ð¡Öµ£¬ÎÞ¼«´óÖµB£®Óм«´óÖµ£¬ÎÞ¼«Ð¡Öµ
C£®¼ÈÓм«Ð¡Öµ£¬Ò²Óм«´óÖµD£®¼ÈÎÞ¼«Ð¡Öµ£¬Ò²ÎÞ¼«´óÖµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\frac{2a}{e}$x-lnx£¨a¡ÊR£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨¢ñ£©ÌÖÂÛº¯Êýf£¨x£©µÄ¼«Öµµã£»
£¨¢ò£©µ±a=1ʱ£¬ÇóÖ¤£ºf£¨x£©-$\frac{{x}^{2}}{{e}^{x}}$£¾0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®º¯Êýf£¨x£©=x2+2x+aÓÐÁãµãµÄ³äÒªÌõ¼þÊÇa¡Ü1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ä³µ¥Î»ÓÐÔ±¹¤90ÈË£¬ÆäÖÐŮԱ¹¤ÓÐ36ÈË£®Îª×öijÏîµ÷²é£¬Äâ²ÉÓ÷ֲã³éÑù³éÈ¡ÈÝÁ¿Îª15µÄÑù±¾£¬ÔòÄÐÔ±¹¤Ó¦Ñ¡È¡µÄÈËÊýÊÇ£¨¡¡¡¡£©
A£®6ÈËB£®9ÈËC£®10ÈËD£®7ÈË

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãa1=$\sqrt{3}$£¬an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$£¨n¡ÊN*£©£¬ÔòS2017=£¨¡¡¡¡£©
A£®-$\sqrt{3}$B£®0C£®$\frac{\sqrt{3}}{2}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸