·ÖÎö £¨1£©g£¨x£©=£¨$\frac{1}{2}$£©|x-a|=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x-a}£¬x¡Ýa}\\{£¨\frac{1}{2}£©^{a-x}£¬x£¼a}\end{array}\right.$£¬ÔÚ£¨-¡Þ£¬a£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨a£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»½áºÏy=g£¨x£©ÔÚ[1£¬$\frac{3}{2}$]ÉϵÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£¬·ÖÀàÌÖÂÛ£¬¿ÉµÃÂú×ãÌõ¼þµÄʵÊýaµÄÖµ£»
£¨2£©·Ö¢Ùa¡Ü0£¬¢Úa£¾0£¬Á½ÖÖÇé¿ö£¬·Ö±ðÇó³öÂú×ã¶ÔÈÎÒâx1¡Ê[2£¬+¡Þ]£¬×Ü´æÔÚΨһµÄx2¡Ê£¨-¡Þ£¬2£©£¬Ê¹µÃp£¨x1£©=p£¨x2£©³ÉÁ¢µÄʵÊýaµÄȡֵ£¬×ÛºÏÌÖÂÛ½á¹û£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©g£¨x£©=£¨$\frac{1}{2}$£©|x-a|=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x-a}£¬x¡Ýa}\\{£¨\frac{1}{2}£©^{a-x}£¬x£¼a}\end{array}\right.$£¬
ÔÚ£¨-¡Þ£¬a£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨a£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»
¢Ùµ±a¡Ü1ʱ£¬µ±x=1ʱ£¬gmax£¨x£©=$£¨\frac{1}{2}£©^{1-a}$=$\frac{\sqrt{2}}{2}$£¬½âµÃ£ºa=$\frac{1}{2}$£»
¢Úµ±1£¼a£¼$\frac{3}{2}$ʱ£¬µ±x=aʱ£¬gmax£¨x£©=$£¨\frac{1}{2}£©^{a-a}$=$\frac{\sqrt{2}}{2}$£¬Î޽⣻
¢Ûµ±a¡Ý$\frac{3}{2}$ʱ£¬µ±x=$\frac{3}{2}$ʱ£¬gmax£¨x£©=$£¨\frac{1}{2}£©^{a-\frac{3}{2}}$=$\frac{\sqrt{2}}{2}$£¬½âµÃ£ºa=2£»
×ÛÉÏËùÊö£¬a=2»ò$\frac{1}{2}$£®
£¨2£©¢ÙÈôa¡Ü0£¬ÓÉx1¡Ý2£¬p£¨x1£©=f£¨x1£©=$\frac{a{x}_{1}}{4{x}_{1}^{2}+16}$¡Ü0£¬
x2£¼2£¬p£¨x2£©=g£¨x2£©=$£¨\frac{1}{2}£©^{|{x}_{2}-a|}$£¾0£¬
¹Êp£¨x1£©=p£¨x2£©²»¿ÉÄܳÉÁ¢£»
¢ÚÈôa£¾0£¬µ±x£¾2ʱ£¬
p£¨x£©=f£¨x£©=$\frac{ax}{4{x}^{2}+16}$=$\frac{a}{4x+\frac{16}{x}}$£¬
¹Êp£¨x£©ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬
¹Êp£¨x1£©¡Ê£¨0£¬f£¨2£©]=£¨0£¬$\frac{a}{16}$]£»
1¡ãÈôa¡Ý2£¬ÓÉx£¼2ʱ£¬p£¨x£©=g£¨x£©=£¨$\frac{1}{2}$£©|x-a|=£¨$\frac{1}{2}$£©-x+a=£¨$\frac{1}{2}$£©a•2x£¬
¡àp£¨x£©ÔÚ£¨-¡Þ£¬2£©Éϵ¥µ÷µÝÔö£¬
´Ó¶øp£¨x2£©¡Ê£¨0£¬£¨$\frac{1}{2}$£©a-2£©£¬
Ҫʹp£¨x1£©=p£¨x2£©³ÉÁ¢£¬
Ö»Ðè$\frac{a}{16}$£¼£¨$\frac{1}{2}$£©a-2³ÉÁ¢¼´¿É£¬
ÓÉÓÚº¯Êýq£¨a£©=$\frac{a}{16}$-£¨$\frac{1}{2}$£©a-2ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇÒq£¨4£©=0£¬
¡à2¡Üa£¼4£»
2¡ãÈô0£¼a£¼2£¬ÓÉx£¼2ʱ£¬p£¨x£©=g£¨x£©=£¨$\frac{1}{2}$£©|x-a|=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x-a}£¬x¡Ýa}\\{£¨\frac{1}{2}£©^{a-x}£¬x£¼a}\end{array}\right.$£¬
¡àp£¨x£©ÔÚ£¨-¡Þ£¬a£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨a£¬2]Éϵ¥µ÷µÝ¼õ£»
´Ó¶øp£¨x2£©¡Ê£¨0£¬g£¨a£©]=£¨0£¬1]£¬
Ҫʹp£¨x1£©=p£¨x2£©³ÉÁ¢£¬
Ö»Ðè$\frac{a}{16}$£¼1£¬ÇÒ$\frac{a}{16}$¡Ü£¨$\frac{1}{2}$£©2-a³ÉÁ¢¼´¿É£¬
¼´$\frac{a}{16}$¡Ü£¨$\frac{1}{2}$£©2-a³ÉÁ¢¼´¿É£¬
ÓÉ0£¼a£¼2µÃ£º$\frac{a}{16}$£¼$\frac{1}{8}$£¬£¨$\frac{1}{2}$£©2-a£¾$\frac{1}{4}$£¬
¹Êµ±0£¼a£¼2ʱ£¬$\frac{a}{16}$¡Ü£¨$\frac{1}{2}$£©2-aºã³ÉÁ¢£®
×ÛÉÏËùÊö£º0£¼a£¼4£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǷֶκ¯ÊýµÄÓ¦Ó㬺¯ÊýµÄµ¥µ÷ÐÔ£¬·ÖÀàÌÖÂÛ˼Ï룬ÄѶÈÖеµ£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$£¬$\frac{1}{¦Ð}$ | B£® | 2£¬$\frac{1}{¦Ð}$ | C£® | $\frac{1}{2}$£¬¦Ð | D£® | 2£¬¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Óм«Ð¡Öµ£¬ÎÞ¼«´óÖµ | B£® | Óм«´óÖµ£¬ÎÞ¼«Ð¡Öµ | ||
| C£® | ¼ÈÓм«Ð¡Öµ£¬Ò²Óм«´óÖµ | D£® | ¼ÈÎÞ¼«Ð¡Öµ£¬Ò²ÎÞ¼«´óÖµ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6ÈË | B£® | 9ÈË | C£® | 10ÈË | D£® | 7ÈË |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\sqrt{3}$ | B£® | 0 | C£® | $\frac{\sqrt{3}}{2}$ | D£® | $\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com