精英家教网 > 高中数学 > 题目详情
15.如图,在长方体ABCD-A1B1C1D1中,AB=16,AA1=8,BC=10,点E,F 分别在A1B1C1D1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形EFGH.
(I)在图中画出这个正方形EFGH(不必说明画法和理由),并说明G,H在棱上的具体
位置;
(II)求平面α把该长方体分成的两部分体积的比值.

分析 (I)过E作EM⊥AB于M,由勾股定理可得MH=6,从而确定出G,H的位置;
(II)两部分均为底面为梯形的直棱柱,代入棱柱的体积公式求出两部分的体积即可得出体积比.

解答 解:(I)作出图形如图所示:
过E作EM⊥AB于M,
∵四边形EFGH为正方形,∴EH=EF=BC=10,
∵EM=AA1=8,
∴MH=$\sqrt{E{H}^{2}-E{M}^{2}}$=6,
∴AH=AM+MH=10,∴DG=10,
即H在棱AB上,G在棱CD上,且AH=DG=10.
(II)设平面α把该长方体分成的两部分体积分别为V1,V2
则V1=S${\;}_{梯形A{A}_{1}EH}$•AD=$\frac{1}{2}$×(4+10)×8×10=560,
V2=V长方体-V1=16×8×10-560=720.
∴$\frac{{V}_{1}}{{V}_{2}}$=$\frac{560}{720}$=$\frac{7}{9}$.

点评 本题考查了棱柱的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知a>0,函数f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,当x∈[0,$\frac{π}{2}$]时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)求f(x)的单调区间;
(3)指出所求函数图象是由f(x)=sinx的图象如何变换得到的.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合A={x|x=(2n+1)π,n∈N}与B={x|x=(4n±1)π,n∈N}之间的关系是(  )
A.A?BB.B?AC.A=BD.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知M={x|($\frac{1}{2}$)x<2},N={x|log2x<1},则M∩N=(  )
A.{x|x>-1}B.{x|-1<x<2}C.{x|0<x<2}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知(1+x)(x+$\frac{1}{{x}^{2}}$)n的展开式中没有常数项,则n的值可能是(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W,则下列命题中:
①曲线W关于原点对称;            
②曲线W关于x轴对称;
③曲线W关于y轴对称;            
④曲线W关于直线y=x对称
所有真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,且长轴长等于4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)F1,F2是椭圆C的两个焦点,⊙O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,并与椭圆C交于不同的两点A,B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a为常数,函数$f(x)=xlnx-\frac{1}{2}a{x^2}$,
(1)当a=0时,求函数f(x)的最小值;
(2)若f(x)有两个极值点x1,x2(x1<x2
①求实数a的取值范围;
②求证:$f({x_1})<-\frac{1}{e}$且x1x2>1(其中e为自然对数的底)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{ax}{4{x}^{2}+16}$,g(x)=($\frac{1}{2}$)|x-a|,其中a∈R.
(1)若y=g(x)在[1,$\frac{3}{2}$]上的最大值为$\frac{\sqrt{2}}{2}$,求实数a的值;
(2)设函数p(x)=$\left\{\begin{array}{l}{f(x),x≥2}\\{g(x),x<2}\end{array}\right.$,若对任意x1∈[2,+∞],总存在唯一的x2∈(-∞,2),使得p(x1)=p(x2)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案