精英家教网 > 高中数学 > 题目详情
7.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,且长轴长等于4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)F1,F2是椭圆C的两个焦点,⊙O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,并与椭圆C交于不同的两点A,B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,求k的值.

分析 (I)由题意长轴长为4求得a的值,离心率e=$\frac{1}{2}$,得出c=1,可得b,即可求椭圆C的方程;
(II)由于圆O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,利用直线与圆相切的从要条件得到一个等式,把直线方程与椭圆方程联立利用整体代换的思想,根据$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,建立k的方程求k.

解答 解:(I)由题意,长轴长为4,即2a=4,解得:a=2,
∵离心率e=$\frac{1}{2}$,∴c=1,
∴b2=3,
∴椭圆的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(II)由直线l与圆O相切,得:$\frac{|m|}{\sqrt{1+{k}^{2}}}$=1,∴m2=1+k2
设A(x1,y1)B(x2,y2)   
由直线l:y=kx+m与椭圆方程,消去y,
整理得:(3+4k2)x2+8kmx+4m2-12=0,
∴x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,
∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=$\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}$,
∴x1x2+y1y2=$\frac{7{m}^{2}-12{k}^{2}-12}{3+4{k}^{2}}$,
∵m2=1+k2
∴x1x2+y1y2=$\frac{-5-5{k}^{2}}{3+4{k}^{2}}$=-$\frac{3}{2}$,
解得:k=±$\frac{\sqrt{2}}{2}$.

点评 此题考查了椭圆的基本性质及椭圆的标准方程,还考查了直线方程与椭圆方程联立之后的整体代换设而不求,还有求解问题时方程的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知点F1(-3,0),F2(3,0),曲线上的动点M满足|MF1|-|MF2|=-4,则该曲线的方程为(  )
A.$\frac{y^2}{4}$-$\frac{x^2}{5}$=1(y≤-2)B.$\frac{y^2}{4}$-$\frac{x^2}{5}$=1C.$\frac{x^2}{4}$-$\frac{y^2}{5}$=1(x≤-2)D.$\frac{x^2}{4}$-$\frac{y^2}{5}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=4+t}\end{array}\right.$(t为参数).以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的方程为ρ=4sinθ,
(1)求曲线C1与C2的直角坐标方程;
(2)曲线C1与C2交于M,N两点,求线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在长方体ABCD-A1B1C1D1中,AB=16,AA1=8,BC=10,点E,F 分别在A1B1C1D1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形EFGH.
(I)在图中画出这个正方形EFGH(不必说明画法和理由),并说明G,H在棱上的具体
位置;
(II)求平面α把该长方体分成的两部分体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=sinx,则f′($\frac{π}{3}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\sqrt{2-\frac{x+6}{x+2}}$的定义域为A,B={x|x2-(m+3)x+3m<0,m∈R}.
(1)若(∁RA)∩B=(1,2),求实数m的值;
(2)若A∪B=A,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.方程(x+2)(x+4)(x+6)(x+8)=105的解是x=-1,或x=-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,一个单摆以OA为始边,OB为终边的角θ(-π<θ<π)与时间t(s)满足函数关系式θ=$\frac{1}{2}$sin(2t+$\frac{π}{2}$),则当t=0时,角θ的大小及单摆频率是(  )
A.$\frac{1}{2}$,$\frac{1}{π}$B.2,$\frac{1}{π}$C.$\frac{1}{2}$,πD.2,π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x2+2x+a有零点的充要条件是a≤1.

查看答案和解析>>

同步练习册答案