分析 先求得f[g(x)]的解析式,x≥0时,由${2}^{{x}^{2}-2x-2}$-1=0,可解得:x=1+$\sqrt{3}$或1-$\sqrt{3}$(小于0,舍去);x<0时,由$\frac{1}{x}$+2=0,可解得:x=-$\frac{1}{2}$,从而可求函数f[g(x)]的所有零点之和.
解答 解:∵$f(x)=\left\{\begin{array}{l}{2^{x-2}}-1,x≥0\\ x+2,x<0\end{array}\right,g(x)=\left\{\begin{array}{l}{x^2}-2x,x≥0\\ \frac{1}{x},x<0.\end{array}\right.$,
∴f[g(x)]=$\left\{\begin{array}{l}{{2}^{{x}^{2}-2x-2}-1,x≥2或x=0}\\{\frac{1}{x}+2,x<0}\end{array}\right.$,且f[g(x)]=x2-2x+2,( 0<x<2)
分情况讨论:①x≥2或x=0时,由2x2-2x-2-1=0,
可解得:x=1+$\sqrt{3}$或1-$\sqrt{3}$(小于0,舍去);
②x<0时,由$\frac{1}{x}$+2=0,可解得:x=-$\frac{1}{2}$,
③当 0<x<2时,由x2-2x+2=0,无解.
∴函数f[g(x)]的所有零点之和是1+$\sqrt{3}$-$\frac{1}{2}$=$\frac{1}{2}$+$\sqrt{3}$,
故答案为:$\frac{1}{2}+\sqrt{3}$.
点评 本题主要考察了函数的零点,函数的性质及应用,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
| A. | 对任意的x∈R,都有2x≥x2成立 | |
| B. | 存在实数x0,使得log${\;}_{\frac{1}{2}}$x0>x0 | |
| C. | 存在常数C,当x>C时,都有2x≥x2成立 | |
| D. | 存在实数x0,使得log${\;}_{\frac{1}{2}}$x0>2${\;}^{{x}_{0}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$,$\frac{1}{π}$ | B. | 2,$\frac{1}{π}$ | C. | $\frac{1}{2}$,π | D. | 2,π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有极小值,无极大值 | B. | 有极大值,无极小值 | ||
| C. | 既有极小值,也有极大值 | D. | 既无极小值,也无极大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com