精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=(m+$\frac{1}{m}$)lnx+$\frac{1}{x}$-x,其中常数m>0.
(1)当m=2时,求f(x)的极大值;
(2)已知m≥4,设A(x1,f(x1))、B(x2,f(x2))是曲线y=f(x)上的相异两点,l1、l2是曲线y=f(x)在A、B两点处的切线,若l1∥l2,求x1+x2的取值范围.

分析 (1)求函数的导数,得到函数的单调区间,从而求出函数的极大值即可;(2)求函数的导数,根据导数的几何意义,结合基本不等式的性质即可得到结论.

解答 解:(1)当m=2时,f(x)=$\frac{5}{2}$lnx+$\frac{1}{x}$-x,f′(x)=$\frac{5}{2x}$-$\frac{1}{{x}^{2}}$-1,(x>0),
∴f′(x)=-$\frac{(x-2)(2x-1)}{{2x}^{2}}$,(x>0),
由f′(x)>0,得:$\frac{1}{2}$<x<2;由f′(x)<0,得:0<x<$\frac{1}{2}$或x>2,
∴f(x)在($\frac{1}{2}$,2)上单调递增,在(0,$\frac{1}{2}$)和(2,+∞)上单调递减,
∴f(x)极大值=f(2)=$\frac{5}{2}$ln2-$\frac{3}{2}$;
(2)f′(x)=$\frac{m+\frac{1}{m}}{x}$-$\frac{1}{{x}^{2}}$-1,(x>0),
由已知f′(x1)=f′(x2),(x1,x2>0且x1≠x2)得:
∴$\frac{m+\frac{1}{m}}{{x}_{1}}$-$\frac{1}{{{x}_{1}}^{2}}$=$\frac{m+\frac{1}{m}}{{x}_{2}}$-$\frac{1}{{{x}_{2}}^{2}}$,即x1+x2=(m+$\frac{1}{m}$)x1x2
∵x1≠x2,∴由不等式性质可得x1•x2<${(\frac{{{x}_{1}+x}_{2}}{2})}^{2}$恒成立,
又∵x1,x2>0,m>0,∴x1+x2<(m+$\frac{1}{m}$)${(\frac{{{x}_{1}+x}_{2}}{2})}^{2}$,
∴x1+x2>$\frac{4}{m+\frac{1}{m}}$对m≥4恒成立,
令g(m)=m+$\frac{1}{m}$,(m≥4),则g′(m)=1-$\frac{1}{{m}^{2}}$,
∵m≥4,∴g′(m)>0,∴g(m)在[4,+∞)递增,
∴g(m)≥g(4)=$\frac{17}{4}$,
记h(x)=f′(x)=-$\frac{1}{{x}^{2}}$(x-m)(x-$\frac{1}{m}$),
h′(x)=-(m+$\frac{1}{m}$)$\frac{1}{{x}^{3}}$(x-$\frac{2m}{{m}^{2}+1}$),h(x)=f′(x)的符号与单调性为:

x(0,$\frac{1}{m}$)$\frac{1}{m}$($\frac{1}{m}$,$\frac{m}{{m}^{2}+1}$)$\frac{m}{{m}^{2}+1}$($\frac{m}{{m}^{2}+1}$,m)m(m,+∞)
f′(x)的符号-0+++0-
f′(x)的单调性最大值
若f′(x1)=f′(x2)=0,则x1=$\frac{1}{m}$,x2=m(以下均假设x1<x2),l1在l2的下方,l1∥l2
若f′(x1)=f′(x2)<0,则x1∈(0,$\frac{1}{m}$),x2∈(m,+∞),l1、l2在点(m,f(m))的两侧,l1∥l2
若f′(x1)=f′(x2)>0,则x1∈($\frac{1}{m}$,$\frac{m}{{m}^{2}+1}$),x2∈($\frac{m}{{m}^{2}+1}$,m),l1、l2在点($\frac{m}{{m}^{2}+1}$,f($\frac{m}{{m}^{2}+1}$))的两侧,l1∥l2
综上所述,l1∥l2时,x1+x2>$\frac{4}{\frac{17}{4}}$=$\frac{16}{17}$,x1+x2的取值范围是($\frac{16}{17}$,+∞).

点评 本题主要考查导数的应用,利用函数单调性,切线斜率和导数的关系是解决本题的关键.综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数y=3sin($\frac{x}{2}$+$\frac{π}{3}$).
(1)写出它的最小正周期和最小值;
(2)在直角坐标系中,用“五点法”画出函数y=f(x)一个周期闭区间上的图象.
(3)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.给定原命题:“若a2+b2=0,则a、b全为0”,那么下列命题形式正确的是(  )
A.逆命题:若a、b全为0,则a2+b2=0
B.否命题:若a2+b2≠0,则a、b全不为0
C.逆否命题:若a、b全不为0,则a2+b2≠0
D.否定:若a2+b2=0,则a、b全不为0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{a}{x}$(a>0).
(1)求f(x)的单调区间;
(2)P(x0,y0)是曲线y=f(x)上的任意一点,若以P(x0,y0)为切点的切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的最小值;
(3)若关于x的方程$\frac{{x}^{3}+2(bx+a)}{2x}$=f(x)+$\frac{1}{2}$在区间(0,e)上有两个不相等的实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1-a+lnx}{x}$,a∈R.
(1)求f(x)的极值;
(2)若lnx-kx<0在(0,+∞)上恒成立,求k的取值范围;
(3)当正整数n>8时,比较${({\sqrt{n}})^{\sqrt{n+1}}}$与${({\sqrt{n+1}})^{\sqrt{n}}}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=\left\{\begin{array}{l}{2^{x-2}}-1,x≥0\\ x+2,x<0\end{array}\right,g(x)=\left\{\begin{array}{l}{x^2}-2x,x≥0\\ \frac{1}{x},x<0.\end{array}\right.$则函数f[g(x)]的所有零点之和是$\frac{1}{2}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={x|x≥0},下列关系成立的是(  )
A.0⊆MB.{0}∈MC.{0}⊆MD.∅∈M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A(3,2,1),B(1,-2,5),则线段AB中点坐标为(2,0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a∈{1,3,5},b∈{2,4,8},则函数y=log${\;}_{\frac{b}{a}}$$\frac{1}{x}$是增函数的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案