分析 把给出的函数看作是关于a的一次函数,由y≥0对任意a∈[-2,2]恒成立得到关于a的不等式组,求解不等式组得答案.
解答 解:f(x)=x2+ax,f(x)≥3-a,可得x2+ax-3+a>0
令g(a)=xa+a+x2-3,
要使f(x)≥3-a成立对任意a∈[-2,2]恒成立,
则$\left\{\begin{array}{l}{g(-2)≥0}\\{g(2)≥0}\end{array}\right.$,即$\left\{\begin{array}{l}{{x}^{2}-2x-5≥0}\\{{x}^{2}+2x-1≥0}\end{array}\right.$,
解得:x$≤-1-\sqrt{2}$或x$≥1+\sqrt{6}$.
故答案为:x$≤-1-\sqrt{2}$或x$≥1+\sqrt{6}$.
点评 本题考查恒成立问题,解答的关键是“更换主元”,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-4,$\frac{3}{4}$] | B. | (-∞,-4]∪[$\frac{3}{4}$,+∞) | C. | (-4,$\frac{3}{4}$]∪[4,+∞) | D. | [-$\frac{3}{4}$,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰直角三角形 | B. | 直角三角形 | ||
| C. | 等腰三角形或直角三角形 | D. | 等边三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{10}$ | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com