| A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{9}$ | D. | $\frac{1}{2}$ |
分析 根据三角函数的不等式求出x的取值范围,结合几何概型的概率公式进行计算即可.
解答 解:由可-1<2sin$\frac{πx}{4}$<$\sqrt{2}$得-$\frac{1}{2}$<sin$\frac{πx}{4}$<$\frac{\sqrt{2}}{2}$,
∵-1≤x≤2,
∴-$\frac{π}{4}$≤$\frac{πx}{4}$≤$\frac{π}{2}$,
则-$\frac{π}{6}$≤$\frac{πx}{4}$<$\frac{π}{4}$,
即-$\frac{2}{3}$≤x<1,
则对应的概率P=$\frac{1-(-\frac{2}{3})}{2-(-1)}$=$\frac{\frac{5}{3}}{3}$=$\frac{5}{9}$,
故选:C
点评 本题主要考查几何概型的概率的计算,求出不等式的等价条件是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{9}{2}$ | C. | $\frac{8}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,10) | C. | (0,1) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com