精英家教网 > 高中数学 > 题目详情
15.某高中体育小组共有男生24人,其50m跑成绩记作ai(i=1,2,…,24),若成绩小于6.8s为达标,则如图所示的程序框图的功能是(  )
A.求24名男生的达标率B.求24名男生的不达标率
C.求24名男生的达标人数D.求24名男生的不达标人数

分析 由题意,从成绩中搜索出大于6.8s的成绩,计算24名中不达标率.

解答 解:由题意可知,k记录的是时间超过6.8s的人数,而i记录是的参与测试的人数,因此$\frac{k}{i}$表示不达标率;
故选B.

点评 本题考查程序框图的理解以及算法功能的描述.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.把函数f(x)=2sin(x+2φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{2}$个单位长度之后,所得图象关于直线$x=\frac{π}{4}$对称,且f(0)<f($\frac{π}{2}$-φ),则φ=(  )
A.$\frac{π}{8}$B.$\frac{3π}{8}$C.$-\frac{π}{8}$D.$-\frac{3π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,A1,A2为椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1,A2的三点,直线QA1,QA2,OS,OT围成一个平行四边形OPQR,则|OS|2+|OT|2=(  )
A.14B.12C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.正方形ABCD与等边三角形BCE有公共边BC,若∠ABE=120°,则BE与平面ABCD所成角的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,椭圆Ω:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,直线l:y=2上的点和椭圆Ω上的点的距离的最小值为1.
(Ⅰ) 求椭圆Ω的方程;
(Ⅱ) 已知椭圆Ω的上顶点为A,点B,C是Ω上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线AC与AB的斜率分别为k1,k2
①求证:k1•k2为定值;
②求△CEF的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是15斤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-2x-3<0},B={x||x|<2},则A∩B=(  )
A.{x|-2<x<2}B.{x|-2<x<3}C.{x|-1<x<3}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω=2,a的最小值是$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦距为$4\sqrt{2}$,短半轴长为2,过点P(-2,1)斜率为1的直线l与椭圆C交于A,B点.
(1)求椭圆C的标准方程;
(2)求弦AB的长.

查看答案和解析>>

同步练习册答案