精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=ax+2,g(x)=$\frac{2a}{x}$,如果f(1)>g(1),且g(x)在(0,+∞)上为增函数,求a的取值范围.

分析 根据函数g(x)的单调性以及不等式的关系进行求解即可.

解答 解:∵g(x)在(0,+∞)上为增函数,
∴a<0,
若f(1)>g(1),
则a+2>2a,即a<2,
综上a<0,
即实数a的取值范围是(-∞,0).

点评 本题主要考查不等式的应用以及函数单调性的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.命题p:函数f(x)=x2+ax+1能取到一切正值,命题q:函数g(x)=(3-2a)2x-1是其定义域上的增函数,若“p且q”为假,“p或q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f($\frac{x}{y}$)=f(x)-f(y),当x>1时,总有f(x)>0.
(1)求f(1)的值.
(2)判断f(x)的单调性并证明.
(3)若f(4)=6,解不等式f(x-1)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合A=(1,2),B=(0,2m),若A⊆B,则实数m的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A(3,2),B($\sqrt{3}$+1,1),过点P(1,0)的直线L与线段AB有公共点,
(1)求直线L的斜率k的取值范围.
(2)求直线L的倾斜角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\frac{2x-1}{3x-4}$的值域是{y|y$≠\frac{2}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)的定义域为[-2,2],则函数g(x)=$\frac{f(x-1)}{\sqrt{2x+1}}$,则g(x)的定义域为(  )
A.(-$\frac{1}{2}$,3]B.(-1,+∞)C.(-$\frac{1}{2}$,0)∪(0,3)D.(-$\frac{1}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解不等式:1<$\frac{3{x}^{2}-7x+8}{{x}^{2}+1}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列各组集合的补集:
(1)全集U=R,A={无理数},求∁UA;
(2)全集U={a,b,c,d},A={c},求∁UA;
(3)全集U={三角形},M={直角三角形},求∁UM;
(4)全集U=R,F={x|x≤-4},求∁UF.

查看答案和解析>>

同步练习册答案