精英家教网 > 高中数学 > 题目详情
命题“?x0∈R,x0=sinx0”的否定是
 
考点:命题的否定
专题:简易逻辑
分析:直接利用特称命题的否定是全称命题写出结果即可.
解答: 解:特称命题的否定是全称命题,所以命题“?x0∈R,x0=sinx0”的否定是:?x∈R,x≠sinx.
故答案为:?x∈R,x≠sinx.
点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(πx+
π
6

(1)当x∈[-
1
2
1
2
]时,求f(x)的最值;
(2)若f(
α
)=
1
4
,求cos(
3
-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)(0.001)
1
3
+27
2
3
+(
1
4
)
1
2
-(
1
9
)-1.5

(2)log3
427
3
+lg25+lg4+7log72

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1

(1)求证不论a为何实数,f(x)总是增函数;
(2)若函数f(x)满足f(-x)=-f(x),求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
A、命题“若am2<bm2,则a<b”的逆命题是真命题
B、命题“存在x0∈R,x02-x0>0”的否定是:“任意x∈R,x2-x≤0”
C、命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
D、已知m,n∈R,则“lnm<lnn”是“em<en”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,α∈(
π
2
,π),则cosα=
 
;tan(
π
4
+α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
1-x
1+x
(其中a>0且a≠1).
(1)判断函数f(x)的奇偶性并证明;
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的b值等于(  )
A、-3B、-8
C、-15D、-24

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0,若f(x)≤|f(
π
6
)|对一切x∈R 恒成立,则下列结论正确的是(  )
①f(
11π
12
)=0;
②既不是奇函数也不是偶函数;
③f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z);
④存在经过点(a,b)的直线与函数f(x)的图象不相交.
A、①②B、①③C、②③D、②④

查看答案和解析>>

同步练习册答案