精英家教网 > 高中数学 > 题目详情
设a和b分别是先后抛掷一枚骰子得到的点数,且随机变量ξ表示方程ax2+bx+1=0的实根的个数(相等的两根算一个根).
(1)求方程ax2+bx+1=0无实根的概率;   
(2)求随机变量ξ的概率分布列.
考点:离散型随机变量的期望与方差
专题:计算题,概率与统计
分析:(1)由题意知本题是一个古典概型,试验发生包含的所有事件根据分步计数原理知是36,满足条件的事件:方程无实根,则△=b2-4a<0即b2<4a,通过列举法得到所包含的基本事件个数,利用古典概型的概率公式求出值.
(2)由题意知实根的个数只有三种结果,0、1、2,根据上一问的计算可以写出当变量取值时对应的概率,写出分布列.
解答: 解:基本事件总数为:6×6=36
(1)若方程无实根,则△=b2-4a<0即b2<4a
若a=1,则b=1,
若a=2,则b=1,2
若a=3,则b=1,2,3
若a=4,则b=1,2,3
若a=5,则b=1,2,3,4
若a=6,则b=1,2,3,4
∴目标事件个数为1+2+3+3+4+4=17
因此方程ax2+bx+1=0无实根的概率为
17
36
…(6分)
(2)由题意知,ξ=0,1,2,
则P(ξ=0)=
17
36
,P(ξ=1)=
2
36
=
1
18
,P(ξ=2)=
17
36

故ξ的分布列为
0 1 2

P
17
36
1
18
17
36
点评:本题主要考查离散型随机变量的分布列和古典概型,古典概型要求能够列举出所有事件和发生事件的个数,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a2=2,a4=6,则前4项的和S4等于(  )
A、8B、10C、12D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中有A=60°,AB=2,BC=
3
,试求角C大小及边AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
2
2
AB.
(Ⅰ)证明:BC1∥平面A1CD;   
(Ⅱ)求二面角D-A1C-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-m2+m+2(m∈Z)在(0,+∞)上单调递增.
(1)求函数f(x)的解析式;
(2)设g(x)=f(x)-ax+1,a为实常数,求g(x)在区间[-1,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)计算(
1+i
2
2+
5i
3+4i

(2)复数z=x+yi(x,y∈R)满足z+2i
.
z
=3+i求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取15名路人进行了问卷调查,得到了如下列联表:
男性 女性 合计
反感 5
不反感 4
合计 15
已知在这15人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
8
15

(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料判断是否能在犯错误的概率不超过0.05的前提下认为反感“中国式过马路”与性别有关?
(2)若从这些不反感的人中随机抽取4人,要求女性人数不少于男性人数,并设女性人数为随机变量ξ,求ξ的所有取值和相应的概率.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中 n=a+b+c+d
p(K2,k0 0.15 0.10 0.05 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2sin(2x+φ)+1的(-π<ϕ<0)的图象的一条对称轴是直线x=
π
8

(1)求φ的值;
(2)求y=f(x)的增区间;
(3)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设(3x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4=
 

查看答案和解析>>

同步练习册答案