精英家教网 > 高中数学 > 题目详情
如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
2
2
AB.
(Ⅰ)证明:BC1∥平面A1CD;   
(Ⅱ)求二面角D-A1C-E的余弦值.
考点:二面角的平面角及求法,直线与平面平行的判定
专题:综合题,空间位置关系与距离,空间角
分析:(Ⅰ)通过证明BC1平行平面A1CD内的直线DF,利用直线与平面平行的判定定理证明BC1∥平面A1CD
(Ⅱ)证明DE⊥平面A1DC,作出二面角D-A1C-E的平面角,然后求解二面角平面角的余弦值即可.
解答: (Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点,
又D是AB中点,连结DF,则BC1∥DF,
因为DF?平面A1CD,BC1?平面A1CD,
所以BC1∥平面A1CD.
(Ⅱ)解:因为直棱柱ABC-A1B1C1,所以AA1⊥CD,
由已知AC=CB,D为AB的中点,所以CD⊥AB,
又AA1∩AB=A,于是,CD⊥平面ABB1A1
设AB=2
2
,则AA1=AC=CB=2,得∠ACB=90°,
CD=
2
,A1D=
6
,DE=
3
,A1E=3
故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC,
又A1C=2
(    )
,过D作DF⊥A1C于F,∠DFE为二面角D-A1C-E的平面角,
在△A1DC中,DF=
A1D•DC
A1C
=
6
2
,EF=
DE2+DF2
=
3
2
2

所以二面角D-A1C-E的余弦值cos∠DFE=
DF
EF
=
3
3
点评:本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是2、3、4,则cos∠B的值为(  )
A、
7
8
B、
11
16
C、
1
4
D、-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n∈N,f(x)=(1+2x)m+(1+x)n
(1)当m=n=2014时,若f(x)的展开式可表示为f(x)=a0+a1x+a2x2+…+a2014x2014,求a0-a1+a2-…-a2014
(2)若f(x)展开式中x的系数是20,则当m,n取何值时,x2系数最小,最小为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式
x2+3
x-a
<x.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆0上异于A,B的点,
(1)求证:BC⊥平面PAC;
(2)设Q,M分别为PA,AC的中点,问:对于线段OM上的任一点G,是否都有QG∥平面PBC?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

从5名女同学和4名男同学中选出4人参加演讲比赛,分别按下列要求,各有多少种不同选法?
(1)男、女同学各2名;
(2)男、女同学分别至少有1名.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a和b分别是先后抛掷一枚骰子得到的点数,且随机变量ξ表示方程ax2+bx+1=0的实根的个数(相等的两根算一个根).
(1)求方程ax2+bx+1=0无实根的概率;   
(2)求随机变量ξ的概率分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax+1,a∈R.
(Ⅰ)求f(x)在x=1处的切线方程;
(Ⅱ)若不等式f(x)≤0恒成立,求a的取值范围;
(Ⅲ)数列{an}中,a1=2,2an+1=an+1,数列{bn}满足bn=nlnan,记{bn}的前n项和为Tn.求证:Tn<4-
n+2
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列三个命题:
①若△ABC三边为a,b,c,面积为S,内切圆的半径r=
2S
a+b+c
,则由类比推理知四面体ABCD的内切球半径R=
3V
S1+S2+S3+S4
(其中,V为四面体的体积,S1,S2,S3,S4为四个面的面积);
②若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是
y
=1.23x+0.08;
③若偶函数f(x)(x∈R)满足f(x+2)=f(x),且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|有3个根.
其中,正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案