精英家教网 > 高中数学 > 题目详情
设顶点在原点,焦点在x轴上的抛物线过点P(2,4),过P作抛物线的动弦PA,PB,并设它们的斜率分别为kPA,kPB
(1)求抛物线的方程;
(2)若kPA+kPB=0,求证直线AB的斜率为定值,并求出其值;
(3)若kPA•kPB=1,求证直线AB恒过定点,并求出其坐标.
(1)依题意,可设所求抛物线的方程为y2=2px(p>0),
因抛物线过点(2,4),故42=4p,p=4,抛物线方程为y2=8x.
(2)设A(x1,y1),B(x2,y2),则kPA=
y1-4
x1-2
=
y1-4
y21
8
-2
=
8
y1+4

同理kPB=
8
y2+4
kAB=
8
y1+y2

∵kPA+kPB=0,
8
y1+4
+
8
y2+4
=0,∴
8
y1+4
=
8
-y2-4
,y1+4=-y2-4,y1+y2=-8
∴kAB=-1.
即直线AB的斜率恒为定值,且值为-1.
(3)∵kPAkPB=1,
8
y1+4
8
y2+4
=1,
∴y1y2+4(y1+y2)-48=0.
直线AB的方程为y-y1=
8
y1+y2
(x-
y21
8
)
,即(y1+y2)y-y1y2=8x.
将y1y2=-4(y1+y2)+48代入上式得
(y1+y2)(y+4)=8(x+6),该直线恒过定点(-6,-4),命题得证.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设顶点在原点,焦点在x轴上的抛物线过点P(2,4),过P作抛物线的动弦PA,PB,并设它们的斜率分别为kPA,kPB
(1)求抛物线的方程;
(2)若kPA+kPB=0,求证直线AB的斜率为定值,并求出其值;
(3)若kPA•kPB=1,求证直线AB恒过定点,并求出其坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设顶点在原点,焦点在x轴上的抛物线过点P(2,4),过P作抛物线的动弦PA,PB,并设它们的斜率分别为k1,k2
(Ⅰ)求抛物线的方程;
(Ⅱ)若k1k2=1,求证直线AB恒过定点,并求出其坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设顶点在原点,焦点在轴上的抛物线上的一点到焦点的距离为,则的值为(      )

A.    B.      C.     D.

查看答案和解析>>

科目:高中数学 来源: 题型:

设顶点在原点,焦点在x轴上的抛物线过点P(2,4),过P作抛物线的动弦PA,PB,并设它们的斜率分别为kPA,kPB.

    (1)求抛物线的方程;

    (2)若kPA+kPB=0,求证直线AB的斜率为定值,并求出其值;

    (3)若kPA·kPB=1,求证直线AB恒过定点,并求出其坐标.

查看答案和解析>>

同步练习册答案