精英家教网 > 高中数学 > 题目详情
20.函数f(x),g(x)的定义域都是D,直线x=x0(x0∈D),与y=f(x),y=g(x)的图象分别交于A,B两点,若|AB|的值是不等于0的常数,则称曲线 y=f(x),y=g(x)为“平行曲线”,设f(x)=ex-alnx+c(a>0,c≠0),且y=f(x),y=g(x)为区间(0,+∞)的“平行曲线”,g(1)=e,g(x)在区间(2,3)上的零点唯一,则a的取值范围是[3e3,+∞).

分析 由题意可得|ex-alnx+c-g(x)|对x∈(0,+∞)恒为常数,且不为0.令x=1求得常数.再由题意可得f(x)=ex-alnx+c在(2,3)上无极值点,运用导数和构造函数,转化为方程无实根,即可得到a的范围.

解答 解:由题意可得|ex-alnx+c-g(x)|对x∈(0,+∞)恒为常数,且不为0.
令x=1,可得|e-0+c-g(1)|=|e+c-e|=|c|>0.
由g(x)在区间(2,3)上的零点唯一,可得:
f(x)=ex-alnx+c在(2,3)上无极值点,
即有f′(x)=ex-$\frac{a}{x}$=$\frac{x{e}^{x}-a}{x}$,
则xex-a=0无实数解,
由y=xex,可得y′=(1+x)ex>0,在(2,3)成立,即有函数y递增,
可得y∈(2e2,3e3),
则a≥3e3
故答案为:[3e3,+∞).

点评 本题考查新定义的理解和运用,考查函数零点问题的解法,考查转化思想的运用,注意运用导数,判断单调性,同时考查构造法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.直线ax-y+3=0与圆(x-2)2+(y-a)2=4相交于M,N两点,若|MN|≥2$\sqrt{3}$,则实数a的取值范围是a≤-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.
(Ⅰ)在所给图中画出平面C1BD1与平面B1EC的交线(不必说明理由);
(Ⅱ)证明:BD1∥平面B1EC;
(Ⅲ)求BD1中点到平面B1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了解本市居民的生活成本,甲、乙、内三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),甲、乙、丙所调查数据的标准差分别为x1,x2,x3,则它们的大小关系为(  )
A.s1>s2>s3B.s1>s3>s2C.s3>s2>s1D.s3>s1>s2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为17,14,则输出的a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第100项,即a100=5252.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.
(Ⅰ) 求证:AB⊥平面ADC;
(Ⅱ) 若AD=1,二面角C-AB-D的平面角的正切值为$\sqrt{6}$,求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料.公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;
(2)求此员工月工资被定为2100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正方体ABCD-A1B1C1D1中,E是CC1的中点,求证:
(1)AC1⊥BD;
(2)AC1∥平面BDE.

查看答案和解析>>

同步练习册答案