精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=ex-(x+1)2(e为自然对数的底数),则f(x)的大致图象是(  )
A.B.C.D.

分析 求出导函数,利用导函数判断函数的单调性.根据数形结合,画出函数的图象,得出交点的横坐标的范围,根据范围判断函数的单调性得出选项.

解答 解:f'(x)=ex-2(x+1)=0,
相当于函数y=ex和函数y=2(x+1)交点的横坐标,画出函数图象如图
由图可知-1<x1<0,x2>1,且x>x2时,f'(x)>0,递增,
故选C

点评 考查了导函数的应用和利用数形结合的方法判断极值点位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.关于函数f(x)=sin2x+sinx+cosx,以下说法:
①周期为2π;②最小值为-$\frac{5}{4}$;③在区间(0,$\frac{π}{2}$)单调递增;④关于x=$\frac{π}{4}$对称,
其中正确的是①②④(填上所有正确说法的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,且经过点$P(1,\frac{3}{2})$,两个焦点分别为F1,F2
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A,B两点,若△AF2B的内切圆半径为$\frac{{3\sqrt{2}}}{7}$,求以F2为圆心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知α,β表示两个不同平面,a,b表示两条不同直线,对于下列两个命题:
①若b?α,a?α,则“a∥b”是“a∥α”的充分不必要条件
②若a?α,b?α,则“α∥β”是“α∥β且b∥β”的充要条件.
判断正确的是(  )
A.①,②是真命题B.①是真命题,②是假命题
C.①是假命题,②是真命题D.①,②都是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}的元素个数为(  )
A.4B.5C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等腰直角△ABC中,∠A=$\frac{π}{2}$,AC=1,BC在x轴上,有-个半径为1的圆P沿x轴向△ABC滚动,并沿△ABC的表面滚过,则圆心P的大致轨迹是(虚线为各段弧所在圆的半径)(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,上顶点为B,直线AB的斜率为$\frac{\sqrt{6}}{6}$,坐标原点O到直线AB的距离为$\frac{\sqrt{42}}{7}$.
(I)求椭圆C的标准方程;
(Ⅱ)是否在圆O:x2+y2=b2上存在点D,使得圆O过点D的切线与椭圆C交于点P,Q,线段PQ的中点为M,直线PQ与OM的夹角为45°?若存在,求点D的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系中,已知三个点列{An}、{Bn}、{Cn},其中An(n,an)、Bn(n,bn)、Cn(n-1,0),满足向量$\overrightarrow{{A}_{n}{A}_{n+1}}$与向量$\overrightarrow{{B}_{n}{C}_{n}}$共线,且bn+1-bn=6,a1=b1=0,则an=3n2-9n+6(n∈N*).(用n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在一宝宝“抓周”的仪式上,在宝宝面前摆着4件学习用品,3件生活用品,4件娱乐用品,若他只抓其中的一件物品,则他抓的结果有10.

查看答案和解析>>

同步练习册答案