精英家教网 > 高中数学 > 题目详情
已知f(x)=log3x.
(1)作出这个函数的图象;
(2)当0<a<2时,利用图象判断是否有满足f(a)>f(2)的a值.
【答案】分析:(1)因为f(x)=log3x,故只需作出对数y=log3x的图象即可,注意其一定过定点(1,0).
(2)由图象可对不等式f(a)>f(2)直接求解.
解答:解:(1)作出函数y=log3x的图象如图所示:
(2)令f(x)=f(2),即log3x=log32,解得x=2.
由如图所示的图象知:当0<a<2时,
恒有f(a)<f(2).
故当0<a<2时,不存在满足f(a)>f(2)的a的值.
点评:本题考查含有绝对值函数的图象的做法、函数的对称变换、解不等式等知识,考查数形结合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案