精英家教网 > 高中数学 > 题目详情
6.x,y,z∈R,则($\frac{{x}^{2}-2xy-4xz+8yz}{{y}^{2}-4yz+4{z}^{2}}$)min=-1.

分析 对分子进行因式分解,x2-2xy-4xz+8yz=(x-2y)(x-4z)=-(2y-x)(x-4z),根据(a+b)2≥4ab便可得出-(2y-x)(x-4z)≥-(y-2z)2,而分母y2-4yz+4z2=(y-2z)2>0,这样便可得出$\frac{{x}^{2}-2xy-4xz+8yz}{{y}^{2}-4yz+4{z}^{2}}≥-1$,从而得出最小值为-1.

解答 解:x2-2xy-4xz+8yz=x(x-2y)-4z(x-2y)=(x-2y)(x-4z)=-(2y-x)(x-4z);
∵$(2y-x)(x-4z)≤\frac{(2y-x+x-4z)^{2}}{4}$=(y-2z)2
∴-(2y-x)(x-4z)≥-(y-2z)2
∴x2-2xy-4xz+8yz≥-(y-2z)2=-(y2-4yz+4z2);
∴$\frac{{x}^{2}-2xy-4xz+8yz}{{y}^{2}-4yz+4{z}^{2}}≥-1$;
∴$(\frac{{x}^{2}-2xy-4xz+8yz}{{y}^{2}-4yz+4{z}^{2}})_{min}=-1$.
故答案为:-1.

点评 考查对一个多项式进行因式分解的能力,对于本题的求最小值,可以想着让分子出现和分母相同的项,从而进行约分得到常数,由不等式a2+b2≥2ab能得到(a+b)2≥4ab.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设x>0,若f(x)=x2+$\frac{4}{{x}^{2}}$-x(cosθ+1)-$\frac{2}{x}$(sinθ+1)≥M恒成立,则实数M的取值范围是(-∞,2-2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若输出的i=5,则k的最小正整数值为(  )
A.88B.89C.8095D.8096

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列命题中正确命题是③④(写出所有正确命题的序号)
①命题“?x0∈R,x02-x0-1<0”的否定是“?x0∈R,x02-x0-1>0”;
②f(x)=|sinx|+|cosx|,则f(x)的最小正周期是π;
③若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
④平面α,β,直线a,b满足:α∥β,a?α,b?β,必存在与a,b都垂直的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,△ABC是边长为2的等边三角形,PC⊥底面ABC,PC=2$\sqrt{2}$,求PA与侧面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知随机变量X服从正态分布N(3,1),且P(X>4)=0.1587,则P(2≤X≤4)等于(  )
A.0.3413B.0.1585C.0.8413D.0.6826

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.过点M(0,1)的直线l与圆心在原点的圆相交于A、B两点,若弦长|AB|=$\sqrt{14}$,△A0B的面积为$\frac{\sqrt{7}}{2}$,求直线l与圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:
(1)$\frac{sin(180°-α)sin(270°-α)tan(90°-α)}{sin(90°+α)tan(270°+α)tan(360°-α)}$;
(2)1+sin(α-2π)•sin(π+α)-2cos2(-α)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=(2a+1)x+3a-1,当-1≤x≤3时,函数值y的最大值是2,求实数a的值.

查看答案和解析>>

同步练习册答案