精英家教网 > 高中数学 > 题目详情
20.已知集合A={-2,-1,0,1},B={x|-2≤x<1},则A∩B=(  )
A.{-1,0}B.{-1,0,1}C.{-2,-1,0}D.{-2,-1,1}

分析 由A与B,求出两集合的交集即可.

解答 解:∵A={-2,-1,0,1},B={x|-2≤x<1},
∴A∩B={-2,-1,0},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为$\widehaty$=0.8x-155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为(  )
x196197200203204
y1367m
A.8.3B.8.2C.8.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知cosα=$\frac{1}{3}$,0<α<π
(1)求sinα,tanα的值;
(2)设f(x)=$\frac{cos(π+x)sin(2π-x)}{cos(π-x)}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若数列{an}通项为an=kn,则“数列{an}为递增数列”的一个必要不充分条件是(  )
A.k≥0B.k>1C.k>0D.k<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知θ∈[0,π),集合A={sinθ,1},B={$\frac{1}{2}$,cosθ},A∩B≠∅,那么θ=$\frac{π}{6}$或$\frac{π}{4}$或0或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某人经营一个抽奖游戏,顾客花费3元钱可购买一次游戏机会,每次游戏中,顾客从标有黑1、黑2、黑3、黑4、红1、红3的6张卡片中随机抽取2张,并根据摸出的卡片的情况进行兑奖,经营者将顾客抽到的卡片情况分成以下类别:A:同花顺,即卡片颜色相同且号码相邻;B:同花,即卡片颜色相同,但号码不相邻;C:顺子,即卡片号码相邻,但颜色不同;D:对子,即两张卡片号码相同;E:其他,即A,B,C,D以外的所有可能情况.若经营者打算将以上五种类别中最不容易发生的一种类别对应顾客中一等奖,最容易发生的一种类别对应顾客中二等奖,其他类别对应顾客中三等奖.
(1)一、二等奖分别对应哪一种类别?(写出字母即可)
(2)若经营者规定:中一、二、三等奖,分别可获得价值9元、3元、1元的奖品,假设某天参与游戏的顾客为300人次,试估计经营者这一天的盈利.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知⊙O:x2+y2=8,P是⊙O上在第一象限的一点,过点P作⊙O的切线与x轴,y轴的正半轴围成一个三角形,当三角形的面积最小时,切点为P1,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$且过点P1
(1)试求椭圆C的方程;
(2)过M(-1,0)作直线l与椭圆C交于A、B两点,且椭圆C的左、右焦点分别为F1,F2,△F1AF2,△F1BF2的面积分别为S1,S2,试确定|S1-S2|取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列关于函数y=ln|x|的叙述正确的是(  )
A.是奇函数,且在(0,+∞)上是增函数B.是奇函数,且在(0,+∞)上是减函数
C.是偶函数,且在(0,+∞)上是减函数D.是偶函数,且在(0,+∞)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=1,a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n}$an=an+1-1(n∈N),数列{an}的前n项和为Sn
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{S}_{n}}$,Tn是数列{bn}的前n项和,求使得Tn<$\frac{m}{10}$对所有n∈N,都成立的最小正整数m.

查看答案和解析>>

同步练习册答案