12£®ÒÑÖª¡ÑO£ºx2+y2=8£¬PÊÇ¡ÑOÉÏÔÚµÚÒ»ÏóÏÞµÄÒ»µã£¬¹ýµãP×÷¡ÑOµÄÇÐÏßÓëxÖᣬyÖáµÄÕý°ëÖáΧ³ÉÒ»¸öÈý½ÇÐΣ¬µ±Èý½ÇÐεÄÃæ»ý×îСʱ£¬ÇеãΪP1£¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$ÇÒ¹ýµãP1£®
£¨1£©ÊÔÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýM£¨-1£¬0£©×÷Ö±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÇÒÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬¡÷F1AF2£¬¡÷F1BF2µÄÃæ»ý·Ö±ðΪS1£¬S2£¬ÊÔÈ·¶¨|S1-S2|ȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÌâÒ⣬ÉèÇÐÏßÓëxÖᣬyÖáµÄ½»µãΪ£¨0£¬c£©£¬£¨d£¬0£©£¬´Ó¶ø¿ÉµÃcd=2$\sqrt{2}$$\sqrt{{c}^{2}+{d}^{2}}$¡Ý2$\sqrt{2}$$\sqrt{2cd}$£¬´Ó¶øÇóµÃÇеãP1£¨2£¬2£©£»´Ó¶øÐ´³öÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßMAµÄ·½³ÌΪx+1=ky£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£»´Ó¶ø¿ÉµÃ|S1-S2|=$\sqrt{6}$•|y1+y2|£¬´Ó¶øÁªÁ¢·½³Ì£¬ÀûÓÃΤ´ï¶¨ÀíÇó½â£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬ÉèÇÐÏßÓëxÖᣬyÖáµÄ½»µãΪ£¨0£¬c£©£¬£¨d£¬0£©£¬
Ôòcd=2$\sqrt{2}$$\sqrt{{c}^{2}+{d}^{2}}$¡Ý2$\sqrt{2}$$\sqrt{2cd}$£¬
£¨µ±ÇÒ½öµ±c=d=4ʱ£¬µÈºÅ³ÉÁ¢£©£¬
¹Êcd¡Ý16£¬¶øS=$\frac{1}{2}$cd£¬
¹ÊÈý½ÇÐεÄÃæ»ý×îСʱ£¬ÇеãP1£¨2£¬2£©£»
¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬
¡àa2=2b2£¬
¹Ê$\frac{4}{2{b}^{2}}$+$\frac{4}{{b}^{2}}$=1£¬
¹Êb2=6£¬a2=12£»
¹ÊÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1£»
£¨2£©ÉèÖ±ÏßMAµÄ·½³ÌΪx+1=ky£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£»
Ôò|S1-S2|=||$\frac{1}{2}$•|F1F2|•|y1|-$\frac{1}{2}$|F1F2|•|y2||
=$\frac{1}{2}$|F1F2|•||y1|-|y2||
=$\sqrt{6}$•|y1+y2|£¬
ÁªÁ¢·½³Ì¿ÉµÃ£¬
$\left\{\begin{array}{l}{\frac{{x}^{2}}{12}+\frac{{y}^{2}}{6}=1}\\{x=ky-1}\end{array}\right.$£¬
»¯¼ò¿ÉµÃ£¬£¨2k2+2£©y2-2ky-11=0£¬
Ôò|y1+y2|=|$\frac{2k}{2{k}^{2}+2}$|=|$\frac{k}{{k}^{2}+1}$|¡Ü$\frac{1}{2}$£¬
¹Ê0¡Ü|y1+y2|¡Ü$\frac{1}{2}$£¬
¹Ê0¡Ü$\sqrt{6}$|y1+y2|¡Ü$\frac{\sqrt{6}}{2}$£®
¼´0¡Ü|S1-S2|¡Ü$\frac{\sqrt{6}}{2}$£®
¼´|S1-S2|µÄȡֵ·¶Î§Îª[0£¬$\frac{\sqrt{6}}{2}$]£®

µãÆÀ ±¾Ì⿼²éÁËÔ²×¶ÇúÏßÓëÖ±ÏßµÄλÖùØÏµµÄÓ¦Óã¬Í¬Ê±¿¼²éÁËÊýÐνáºÏµÄ˼ÏëÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª¦ÁΪÈñ½Ç£¬ÇÒ$tan¦Á=\sqrt{2}-1$£¬º¯Êý$f£¨x£©={x^2}tan2¦Á+x•sin£¨2¦Á+\frac{¦Ð}{4}£©$£¬ÊýÁÐ{an}µÄÊ×Ïî${a_1}=\frac{1}{2}\;£¬\;{a_{n+1}}=f£¨{a_n}£©$£¬ÔòÓУ¨¡¡¡¡£©
A£®an+1£¾anB£®an+1¡ÝanC£®an+1£¼anD£®an+1¡Üan

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªiΪÐéÊýµ¥Î»£¬Èô¸´ÊýzÂú×ã|z-3-4i|=1£¬Ôò|z|µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®4B£®5C£®4$\sqrt{2}$D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¼¯ºÏA={-2£¬-1£¬0£¬1}£¬B={x|-2¡Üx£¼1}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{-1£¬0}B£®{-1£¬0£¬1}C£®{-2£¬-1£¬0}D£®{-2£¬-1£¬1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¼¯ºÏA={x|x2-2x-3£¼0£¬x¡ÊN}£¬B={y|y2=1-x2£¬x¡ÊA}£¬ÔòA¡ÉBµÄ×Ó¼¯¸öÊýΪ£¨¡¡¡¡£©
A£®2B£®4C£®7D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢Ö±½Ç×ø±êϵ£¬ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2acos¦È£¨a¡ÊR£©£¬¹ýµãP£¨-2£¬-4£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨ÆäÖÐtΪ²ÎÊý£©£®
£¨1£©ÈôÇúÏßCºÍÖ±ÏßlÓй«¹²µã£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC·Ö±ð½»ÓÚM£¬NÁ½µã£¬ÇÒ|PM|•|MN|•|PN|³ÉµÈ±ÈÊýÁУ¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÈôʵÊýx£¬yÂú×ãx2-4xy+4y2+4x2y2=2£¬Ôòµ±x+2yµÄ×î´óֵΪ$\sqrt{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¡÷ABCÖУ¬ÒÑÖª$\overrightarrow{CA}$=$\overrightarrow{a}$£¬$\overrightarrow{CB}$=$\overrightarrow{b}$£¬ÇÒ4|$\overrightarrow{a}$|=3|$\overrightarrow{b}$|=12£¬$\overrightarrow{a}•\overrightarrow{b}$=0£¬EΪ¡ÏCƽ·ÖÏßCDµÄÖе㣬µãDΪABÉϵĵ㣬AE½»BCÓÚF£¬ÄÇô$\overrightarrow{AF}•\overrightarrow{CD}$=$-\frac{108}{35}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈçͼÔÚÆ½ÐÐËıßÐÎABCDÖУ¬E¡¢F·Ö±ðÊÇAB¡¢BC±ßÖе㣬Ïß¶ÎCE¡¢DFÏཻÓÚµãG£¬Èô$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AD}$=$\overrightarrow{b}$£¬Ôò$\overrightarrow{AG}$=£¨¡¡¡¡£©
A£®$\frac{4}{5}$$\overrightarrow{a}$+$\frac{3}{5}$$\overrightarrow{b}$B£®$\frac{3}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$C£®$\frac{5}{6}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$D£®$\frac{2}{3}$$\overrightarrow{a}$+$\frac{5}{6}$$\overrightarrow{b}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸