精英家教网 > 高中数学 > 题目详情
已知抛物线,直线交抛物线于两点,且

(1)求抛物线的方程;
(2)若点是抛物线上的动点,过点的抛物线的切线与直线交于点,问在轴上是否存在定点,使得?若存在,求出该定点,并求出的面积的最小值;若不存在,请说明理由.
(1).(2)存在定点(0,1),. 

试题分析:(1)把代入,消去,整理得
                     2分
过抛物线的焦点
抛物线的方程为.                         6分
(2)切线方程为,即
                         8分

时,,即            10分

点是抛物线的焦点,


,       13分
不妨设,令

上递减,在上递增,

即当时,.         15分
点评:解决抛物线中的定值及最值问题的基本思想是建立目标函数和建立不等式(方程)关系,根据条件求解定值及最值,因此这里问题的难点就是如何建立目标函数和不等式(或等量关系)。建立目标函数的关键是选用一个合适变量,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据实际情况灵活处理。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

是椭圆上的两点,已知向量,若且椭圆的离心率,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆和双曲线有相同的焦点F1、F2,以线段F1F2为边作正△F1F2M,若椭圆与双曲线的一个交点P恰好是MF1的中点,设椭圆和双曲线的离心率分别为等于
A.5B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线的渐近线与圆)相切,则
A.5B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:)离心率为,上顶点M,右顶点N,直线MN与圆相切,斜率为k的直线l经过椭圆E在正半轴的焦点F,且交E于A、B不同两点.
(1)求E的方程;
(2)若点G(m,0)且| GA|=| GB|,,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

曲线,曲线.自曲线上一点的两条切线切点分别为.

(1)若点的纵坐标为,求
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,直线的参数方程为(为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 求直线被曲线所截得的弦长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别为双曲线的左右焦点,点P在双曲线的右支上,且到直线的距离等于双曲线的实轴长,则该双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,直线的参数方程是:(为参数).
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线交于两点,点的直角坐标为,若,求直线的普通方程.

查看答案和解析>>

同步练习册答案