精英家教网 > 高中数学 > 题目详情
已知等比数列{an}中,公比q=2,前5项和S5=62
(1)求数列{an}的通项公式;
(2)若a3,a5分别为等差数列{bn}的第3项和第5项,求数列{bn}的通项公式及前n项和Tn
考点:数列的求和,等比数列的通项公式
专题:等差数列与等比数列
分析:(1)利用等比数列{an}的通项公式及其前n项和公式即可得出;
(2)设等差数列{bn}的公差为d,由b3=a3=8,b5=a5=25=32,利用等差数列的通项公式及其前n项和公式即可得出.
解答: 解:(1)∵等比数列{an}中,公比q=2,前5项和S5=62,
a1(25-1)
2-1
=62,解得a1=2.
an=2n
(2)设等差数列{bn}的公差为d,
∵b3=a3=23=8,b5=a5=25=32,
b1+2d=8
b1+4d=32
,解得
b1=-16
d=12

∴bn=-16+12(n-1)=12n-28.
Tn=
n(-16+12n-28)
2
=6n2-22n.
点评:本题考查了等差数列与等比数列的通项公式及其前n项和的公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+y2=1(a>1)的上顶点为A,右焦点为F2,直线AF2与圆M:(x-3)2+(y-1)2=3相切.
(1)求椭圆C的方程;
(2)过椭圆C的左焦点F1且斜率为1的直线l交椭圆C于P、Q两点,求△PF2Q的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知
a
b
,求作
a
-
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:mx-y+1-m=0和圆C:x2+(y-1)2=5
(1)求证:不论m为何值,直线l与圆C总相交;
(2)设直线l与圆C的交点为A,B,若|AB|=
17
,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如图所示的程序,画出其相应的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
1
2
|x-1|的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
2
,且(n+2)an+1=nan,则它的前20项之和S20=(  )
A、
18
19
B、
19
20
C、
20
21
D、
21
22

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=an+1+n-2,(n∈N*),且a1=2.
(1)证明:数列{an-1}是等差数列,并求数列{an}的通项公式;
(2)设bn=
3n
Sn-n+1
(n∈N*)的前n项和为Tn,证明Tn<6.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,且A+C=
3
,b=1.
(1)记角A=x,f(x)=a+c,若△ABC是锐角三角形,求f (x)的取值范围;
(2)求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案