精英家教网 > 高中数学 > 题目详情
根据如图所示的程序,画出其相应的程序框图.
考点:输入、输出语句
专题:算法和程序框图
分析:根据题目中的程序语言,得出该程序是顺序结构,由此画出流程图.
解答: 解:根据题意,画出相应的程序框图如下;
点评:本题考查了画出程序框图的问题,解题时应分析程序语言,把程序语言转化为程序框图,考查了画图的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,且Sn=2an-1,设bn=2(log2an+1),n∈N*
(1)求数列{an}的通项公式;
(2)求数列{bn•an}的前n项和Tn
(3)证明:对于任意n∈N+,不等式
b1+1
b1
b2+1
b2
•…•
bn+1
bn
n+1
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于直线a、b与平面α、β,有下列四个命题:其中真命题的序号是(  )
①若a∥α,b∥β且α∥β,则a∥b     
②若a⊥α,b⊥β且α⊥β,则a⊥b
③若a⊥α,b∥β且α∥β,则a⊥b     
④若a∥α,b⊥β且α⊥β,则a∥b.
A、①②B、②③C、③④D、④①

查看答案和解析>>

科目:高中数学 来源: 题型:

某市出租车收费标准是:3km起价10元(乘一次的最少车费);行驶3km后,每千米车费1.6元,行驶10km后,每千米车费2.4元
(1)写出车费y与里程x的函数关系式
(2)一顾客行程30km,为了省钱,他设计了三种乘车方案:①乘一辆出租车到达目的地;②分两段乘车,乘一辆车行15km,换另一辆车再行15km;③分三段乘车,每行10km换一次车,问哪种方案最省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+△x,f(1+△x)),则
△y
△x
等(  )
A、4
B、4+2△x
C、4+2(△x)2
D、4x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,公比q=2,前5项和S5=62
(1)求数列{an}的通项公式;
(2)若a3,a5分别为等差数列{bn}的第3项和第5项,求数列{bn}的通项公式及前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的各项均为正数,其前4项和S4=
40
81
,且a32=9a2a6
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列{
1
bn
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足|DM|=m|DA|,当点A在圆上运动时,记点M的轨迹为曲线C,求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

求过三点A(-2,4),B(-1,3),C(2,6)的圆的方程.

查看答案和解析>>

同步练习册答案