精英家教网 > 高中数学 > 题目详情
1.过椭圆C:$\frac{x^2}{25}$+$\frac{y^2}{16}$=1的右焦点F2且与x轴垂直的直线与椭圆C相交于A、B两点,则弦长|AB|=(  )
A.$\frac{16}{25}$B.$\frac{16}{5}$C.$\frac{32}{5}$D.$\frac{25}{4}$

分析 椭圆$\frac{x^2}{25}$+$\frac{y^2}{16}$=1,可得c=3,取焦点F(3,0).把x=3代入椭圆方程,解得y,即可得出弦长|AB|.

解答 解:由题意可知:a2=25,b2=16,
c2=a2-b2=9,
由x=3时,y=±$\frac{16}{5}$,
∴弦长|AB|=$\frac{32}{5}$,
故选C.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x,x≥2}\\{{a}^{x}-4,x<2}\end{array}\right.$满足对任意的实数x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,则实数a的取值范围为(  )
A.(1,2]B.($\frac{13}{4}$,2]C.(1,3]D.($\frac{13}{4}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了得到函数y=sin(3x+$\frac{π}{6}$)的图象,只需要把函数y=sin(x+$\frac{π}{6}$)的图象上的所有点(  )
A.横坐标伸长为原来的3倍,纵坐标不变
B.横坐标缩短为原来的$\frac{1}{3}$倍,纵坐标不变
C.纵坐标伸长为原来的3倍,横坐标不变
D.纵坐标缩短为原来的$\frac{1}{3}$倍,横坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.石家庄市为鼓励居民节约用电,采用分段计费的方法计算电费,每月用电不超过100度时,按每度0.52元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.6元计算.
(1)设月用电x度时,应缴电费y元,写出y关于x的函数关系式;
(2)小明家第一季度缴纳电费情况如表:
月份一月二月三月合计
缴费金额82元64元46.8元192.8元
问小明家第一季度共用电多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=ax2+2x+1在(-∞,0)上至少有一个零点,则实数a的取值范围为(  )
A.(-∞,0)B.(-∞,1]C.(-∞,0)∪(0,1]D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,边长为2的正方形ABCD中,点E、F分别是边AB、BC的中点,现将△AED,△EBF,△FCD分别沿DE、EF、FD折起,使A、B、C三点重合于点M,则三棱锥M-DEF的外接球的体积为(  )
A.B.C.$\sqrt{6}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)=-$\frac{1}{2}{x^2}$+bln(x+2)在(-1,+∞)上是减函数,则b的取值范围是(  )
A.[一l,+∞)B.(一1,+∞)C.(一∞,一1]D.(一∞,一l)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow{e_1}$、$\overrightarrow{e_2}$是夹角为60°的两个单位向量,$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2}$,$\overrightarrow b=2\overrightarrow{e_1}-3\overrightarrow{e_2}$,求:
(Ⅰ) $\overrightarrow a•\overrightarrow b$;
(Ⅱ)|$\overrightarrow a+\overrightarrow b$|与|$\overrightarrow a-\overrightarrow b$|;
(Ⅲ)$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x3-$\frac{9}{2}$x2+6x-abc,a<b<c且f(a)=f(b)=f(c)=0,现有四个结论:
①f(1)f(0)>0;②f(1)f(0)<0;③f(2)f(0)<0;④f(2)f(0)>0
正确的结论是(  )
A.②④B.①③C.①④D.②③

查看答案和解析>>

同步练习册答案