精英家教网 > 高中数学 > 题目详情
1.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=$\sqrt{2}$,AC⊥BC,AC=BC=2,D在棱PB上,且PD=λPB(0<λ<1).
(Ⅰ)若AD⊥PC,求λ的值;
(Ⅱ)在(Ⅰ)的条件下,求二面角B-AD-C的正弦值.

分析 (Ⅰ)建立空间坐标系,求出AD和PC对应的向量,利用直线垂直和向量数量积的关系,利用向量法建立方程关系即可求λ的值;
(Ⅱ)在(Ⅰ)的条件下,求出平面的法向量先求出二面角的余弦值即可求二面角B-AD-C的正弦值.

解答 解:(Ⅰ)建立以O为坐标原点,OB,OA,OD分别为x,y,z轴的空间直角坐标系如图:
则A(0,0,0),B(2,2,0),C(0,2,0),P(0,0,$\sqrt{2}$),
则$\overrightarrow{PB}$=(2,2,-$\sqrt{2}$),$\overrightarrow{PC}$=(0,2,-$\sqrt{2}$),$\overrightarrow{AP}$=(0,0,$\sqrt{2}$),
∵PD=λPB,∴$\overrightarrow{PD}$=λ$\overrightarrow{PB}$=(2λ,2λ,-$\sqrt{2}$λ),
则$\overrightarrow{AD}$=$\overrightarrow{AP}$+$\overrightarrow{PD}$=(2λ,2λ,$\sqrt{2}$-$\sqrt{2}$λ),
∵AD⊥PC,∴$\overrightarrow{AD}$•$\overrightarrow{PC}$=0,即(2λ,2λ,$\sqrt{2}$-$\sqrt{2}$λ)•(0,2,-$\sqrt{2}$)=4λ-2+2λ=0,
得λ=$\frac{1}{3}$.
(Ⅱ)∵λ=$\frac{1}{3}$,∴$\overrightarrow{AD}$=(2λ,2λ,$\sqrt{2}$-$\sqrt{2}$λ)=($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2\sqrt{2}}{3}$),则D($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2\sqrt{2}}{3}$),
设面CAD的法向量为$\overrightarrow{m}$=(x,y,z),
则$\overrightarrow{AD}$=($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2\sqrt{2}}{3}$),$\overrightarrow{DC}$=(0,2,0),
即$\overrightarrow{m}$•$\overrightarrow{AD}$=$\frac{2}{3}$x+$\frac{2}{3}$y+$\frac{2\sqrt{2}}{3}$z=0,$\overrightarrow{m}$•$\overrightarrow{DC}$=2y=0,
设x=1,则$\overrightarrow{m}$=(1,0,-$\frac{\sqrt{2}}{2}$),
取AB的中点O,连接OC,
∵AC=BC=2,∴CO⊥AB,
∵PA⊥平面PAB,
∴平面PAB的一个法向量为$\overrightarrow{n}$=$\overrightarrow{OC}$=(-1,1,0)
$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-1}{\sqrt{2}•\sqrt{\frac{3}{2}}}$=$-\frac{\sqrt{3}}{3}$,
则sin<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\sqrt{6}}{3}$,
即二面角B-AD-C的正弦值是$\frac{\sqrt{6}}{3}$.

点评 本题主要考查空间直线垂直及二面角的求解,建立坐标系,求出平面的法向量,利用向量法是解决本题的关键.综合考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.不等式(x-3)(x-1)>0的解集是(  )
A.{x|x>3}B.{x|1<x<3}C.{x|x>1}D.{x|x<1或x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到如图所示的散点图及一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}({w}_{i}-\overline{w})^{2}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)(y1-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
 46.6 563 6.8289.81.6 1469 108.8
其中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题,当年宣传费x=49时,年销售量及年利润的预报值是多少?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βμ的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知:(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+anxn
(1)若a0+a1+a2+…+an=2046,求二项(2-x)n展开式中奇数项系数之和;
(2)若a0=8,求二项(1+2x)n展开式中系数最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=$\frac{2}{\sqrt{x}}$,则其导函数f′(x)=(  )
A.$\frac{1}{x\sqrt{x}}$B.-$\frac{1}{x\sqrt{x}}$C.-$\frac{2}{x\sqrt{x}}$D.-$\frac{2}{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图所示,则该几何体的体积为$\frac{13π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,△ABC内接于圆O,D是$\widehat{BAC}$的中点,∠BAC的平分线分别交BC和圆O于点E,F.
(Ⅰ)求证:BF是△ABE外接圆的切线;
(Ⅱ)若AB=3,AC=2,求DB2-DA2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.πD.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知0<a<1,试比较a与a2的大小.

查看答案和解析>>

同步练习册答案