精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦点与双曲线的焦点重合,并且经过点.

(Ⅰ)求椭圆C的标准方程;

(II) 设椭圆C短轴的上顶点为P,直线不经过P点且与相交于两点,若直线PA与直线PB的斜率的和为,判断直线是否过定点,若是,求出这个定点,否则说明理由.

【答案】(Ⅰ);(II)过定点

【解析】

Ⅰ)推导出,从而焦点F1,0),F2,0),由椭圆定义得a=2,b=1,由此能求出椭圆的标准方程.

II先考虑斜率不存在时,不存在两个交点,舍去,斜率存在时设直线l方程为:ykx+mAx1y1),Bx2y2),由代入1得到m=﹣2k﹣1,代入直线方程即可得到定点

(Ⅰ)双曲线的焦点为,,亦即椭圆C的焦点,

又椭圆经过点.

由椭圆定义得

解得

∴椭圆的方程为:
(II)当斜率不存在时,设

得t=2,此时过椭圆右顶点,不存在两个交点,故不满足题意.

当斜率存在时,设

联立,整理得

,此时,存在使得成立.

∴直线的方程为,即

时,上式恒成立,所以过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足 =
(Ⅰ)求角A的大小;
(Ⅱ)若a=2 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x﹣a,g(x)=x+2.
(1)当a=1时,求不等式f(x)+f(﹣x)≤g(x)的解集;
(2)求证: 中至少有一个不小于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: + =1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=﹣x+3与椭圆E有且只有一个公共点T.
(Ⅰ)求椭圆E的方程及点T的坐标;
(Ⅱ)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA||PB|,并求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(ωx+φ)(ω>0),f'(x)是f(x)的导函数,若f(α)=0,f'(α)>0,且f(x)在区间[α, +α)上没有最小值,则ω取值范围是(
A.(0,2)
B.(0,3]
C.(2,3]
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上任意一点到直线的距离是它到点的距离的2倍.

(1) 求曲线的方程;

(2) 过点的直线与曲线交于两点.若的中点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】14分)已知ab为常数,且a≠0,函数fx=﹣ax+b+axlnxfe=2e=2.71828…是自然对数的底数).

I)求实数b的值;

II)求函数fx)的单调区间;

III)当a=1时,是否同时存在实数mMmM),使得对每一个t∈[mM],直线y=t与曲线y=fx)(x∈[e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4=0
(1)若直线l与曲线C没有公共点,求m的取值范围;
(2)若m=0,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax2(a∈R)
(Ⅰ) 讨论f(x)的单调性;
(Ⅱ) 若对于x∈(0,+∞),f(x)≤a﹣1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案