精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ax2-x(x∈R,a≠0),g(x)=lnx.若函数h(x)=f(x)-g(x)有两个不同的零点,则a的取值范围是0<a<1.

分析 先由f(x)=g(x)分离a,即求出a的表达式,再构造函数k(x)=$\frac{lnx+x}{{x}^{2}}$,再求导判断单调性以及最值和特殊函数值的符号,求出满足条件的a的范围.

解答 解:由h(x)=f(x)-g(x)=0,得ax2-x=lnx(a≠0,x>0),即a=$\frac{lnx+x}{{x}^{2}}$.
令k(x)=$\frac{lnx+x}{{x}^{2}}$,则k′(x)=$\frac{1-x-2lnx}{{x}^{3}}$,
当0<x<1时,1-x-2lnx>0,即k′(x)>0,
∴k(x)在(0,1)上单调递增,且k(e-1)=$\frac{-1+{e}^{-1}}{{e}^{-2}}$<0,
当x>1时,1-x-2lnx<0,即k′(x)<0,
∴k(x)在(1,+∞)上单调递减,且$\frac{lnx+x}{{x}^{2}}$.>0,
∴k(x)在x=1处取得最大值k(1)=1,
故要是y=a和y=$\frac{lnx+x}{{x}^{2}}$的图象有两个交点,只需0<a<1.
故答案为:0<a<1.

点评 本题考查导数知识的运用,考查函数的零点,正确转化是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知点P是抛物线y=ax2上的一个动点,且点P到点A(2,0)的距离与点P到该抛物线准线的距离之和的最小值为$\sqrt{5}$,则a的值为(  )
A.$\frac{1}{4}$B.4C.$±\frac{1}{4}$D.±4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知i为虚数单位,若复数z=$\frac{1-2i}{1+i}$,则复数z的实部与虚部的和是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合U={1,2,3,4,5},A={1,2,3},∁UB={1,3,5},则集合A∩B=(  )
A.{2}B.{3}C.{1,2,3,5}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1,F2分别为椭圆$C:\frac{x^2}{25}+\frac{y^2}{9}=1$的左、右焦点,点A∈C,点M的坐标为(1,0),AM为∠F1AF2的平分线,则|AF2|=$\frac{25}{4}$或$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,设计一个程序为秘钥,当接收方收到密文为14,9,23,28时,解密得到的明文为(  )
A.4,6,1,7B.7,6,1,4C.1,6,4,7D.6,4,1,7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则(  )
A.a2=$\frac{11}{2}$B.a2=11C.b2=$\frac{1}{2}$D.b2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知一四棱锥P-ABCD的三视图如图.
(Ⅰ)画出四棱锥P-ABCD的直观图(直接画出图形,不写过程).
(Ⅱ)在平面ABCD内过B作PA的垂线,在直观图中画出来,并说明画法的依据.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.口袋中有三个大小相同、颜色不同的小球各一个,每次从中取一个,记下颜色后放回,当三种颜色的球全部取出时停止取球,则恰好取了5次停止种数为42.

查看答案和解析>>

同步练习册答案