【题目】中心在原点的椭圆E的一个焦点与抛物线
的焦点关于直线
对称,且椭圆E与坐标轴的一个交点坐标为
.
(1)求椭圆E的标准方程;
(2)过点
的直线l(直线的斜率k存在且不为0)交E于A,B两点,交x轴于点P点A关于x轴的对称点为D,直线BD交x轴于点Q.试探究
是否为定值?请说明理由.
科目:高中数学 来源: 题型:
【题目】平面内与两定点
,
连线的斜率之积等于
的点的轨迹,加上
、
两点所成的曲线为
.若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
、
满足
.
(1)求曲线
的轨迹方程;
(2)求
面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的图象在
(
为自然对数的底数)处的切线方程;
(2)若对任意的
,均有
,则称
为
在区间
上的下界函数,
为
在区间
上的上界函数.
①若
,求证:
为
在
上的上界函数;
②若
,
为
在
上的下界函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且以椭圆上的点和长轴两端点为顶点的三角形的面积的最大值为
.
(1)求椭圆
的方程;
(2)经过定点
的直线
交椭圆
于不同的两点
、
,点
关于
轴的对称点为
,试证明:直线
与
轴的交点
为一个定点,且
(
为原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率
,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验,受其启发,我们也可以通过设计下面的实验来估计
的值:先请240名同学,每人随机写下两个都小于1的正实数x,y组成的实数对
,再统计两数能与1构成钝角三角形三边的数对
的个数m;最后再根据计数m来估计π的值.假设统计结果是
,那么可以估计
的近似值为____________.(用分数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,满足
,则( )
A.函数
有2个极小值点和1个极大值点
B.函数
有2个极大值点和1个极小值点
C.函数
有可能只有一个零点
D.有且只有一个实数
,使得函数
有两个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线E:
(
)与圆O:
相交于A,B两点,且
.过劣弧
上的动点
作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线
,
,相交于点M.
![]()
(1)求抛物线E的方程;
(2)求点M到直线
距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的方程为
.在以原点O为极点,x轴正半轴为极轴的极坐标系中,P的极坐标为
,直线l过点P.
(1)若直线l与OP垂直,求直线l的直角标方程:
(2)若直线l与曲线C交于A,B两点,且
,求直线l的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com