精英家教网 > 高中数学 > 题目详情

【题目】函数e是自然对数的底数,)存在唯一的零点,则实数a的取值范围为( )

A.B.C.D.

【答案】A

【解析】

函数是自然对数的底数,存在唯一的零点等价于函数 与函数只有唯一一个交点,由,可得函数 与函数唯一交点为的单调,根据单调性得到的大致图象,从图形上可得要使函数 与函数只有唯一一个交点,则,即可解得实数的取值范围.

解:函数是自然对数的底数,存在唯一的零点等价于:

函数 与函数只有唯一一个交点,

函数 与函数唯一交点为

,且

上恒小于零,即上为单调递减函数,

是最小正周期为2,最大值为的正弦函数,

可得函数 与函数的大致图象如图:

要使函数 与函数只有唯一一个交点,则

,解得

实数的范围为

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的两个非空子集,如果存在一个函数满足:① ;② 对任意,当时,恒有,那么称这两个集合为“的保序同构”,以下集合对不是“的保序同构”的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.

(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;

(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为,再由乙猜甲刚才想的数字把乙猜的数字记为,且,若,则称甲乙“心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是偶函数,.

(1)求的值,并判断函数上的单调性,说明理由;

(2)设,若函数的图像有且仅有一个交点,求实数的取值范围;

(3)定义在上的一个函数,如果存在一个常数,使得式子对一切大于1的自然数都成立,则称函数为“上的函数”(其中,).试判断函数是否为“上的函数”,若是,则求出的最小值;若不是,则说明理由.(注:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,直线被圆截得的弦长为.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标和的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在图1所示的梯形中,于点,且.将梯形沿折起,使平面平面,如图2所示,连接,取的中点.

(1)求证:平面平面

(2)设,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中,分别为棱的中点,为棱上的一点,且,设点的中点,则点到平面的距离为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案