【题目】数列{an}的前n项和为Sn , 且Sn=n(n+1)(n∈N*)
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:an= + + +…+ ,求数列{bn}的通项公式;
(3)令cn= (n∈N*),求数列{cn}的前n项和Tn .
【答案】
(1)解:∵数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*),
∴n≥2时,an=Sn﹣Sn﹣1=n(n+1)﹣n(n﹣1)=2n.
n=1时,a1=S1=2,对于上式也成立.
∴an=2n.
(2)解:数列{bn}满足:an= + + +…+ ,∴n≥2时,an﹣an﹣1= =2.
∴bn=2(3n+1).
n=1时, =a1=2,可得b1=8,对于上式也成立.
∴bn=2(3n+1).
(3)解:cn= = =n3n+n,
令数列{n3n}的前n项和为An,则An=3+2×32+3×33+…+n3n,
∴3An=32+2×33+…+(n﹣1)3n+n3n+1,
∴﹣2An=3+32+…+3n﹣n3n+1= ﹣n3n+1,
可得An= .
∴数列{cn}的前n项和Tn= + .
【解析】(1)数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*),n≥2时,an=Sn﹣Sn﹣1.n=1时,a1=S1=2,即可得出.(2)数列{bn}满足:an= + + +…+ ,可得n≥2时,an﹣an﹣1= =2.n=1时, =a1=2,可得b1.(3)cn= = =n3n+n,令数列{n3n}的前n项和为An,利用错位相减法即可得出An.进而得出数列{cn}的前n项和Tn.
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn= (3n+5),正项等比数列{bn}中,b2=4,b1b7=256.
(1)求{an}与{bn}的通项公式;
(2)设cn=anbn , 求{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )
A.[﹣ , ]
B.[﹣2,2]
C.[﹣1,1]
D.[﹣4,4]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,Sn是其前n项和.已知a1+a3=16,S4=28.
(1)求数列{an}的通项公式
(2)当n取何值时Sn最大,并求出这个最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= AB=1,M为PB中点.
(1)证明:CM∥平面PAD;
(2)求二面角A﹣MC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元). (Ⅰ)将y表示为x的函数:
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】F1 , F2分别是双曲线 ﹣ =1(a,b>0)的左右焦点,点P在双曲线上,满足 =0,若△PF1F2的内切圆半径与外接圆半径之比为 ,则该双曲线的离心率为( )
A.
B.
C. +1
D. +1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com