【题目】函数
是定义在(-1,1)上的奇函数,且
.
(1)求函数的解析式;
(2)证明函数f(x)在(-1,1)上是增函数.
科目:高中数学 来源: 题型:
【题目】在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如下表所示.
组别 |
|
|
|
|
|
|
|
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以大致认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求
;
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::
(ⅰ)得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
(ⅱ)每次获赠送的随机话费和对应的概率为:
赠送的随机话费(单元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
现有市民甲要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列与数学期望.
附:参考数据与公式
,若
,则
①
;
②
;
③
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校
、
两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两班数学兴趣小组成绩的平均值及方差
![]()
①
班数学兴趣小组的平均成绩高于
班的平均成绩
②
班数学兴趣小组的平均成绩高于
班的平均成绩
③
班数学兴趣小组成绩的标准差大于
班成绩的标准差
④
班数学兴趣小组成绩的标准差大于
班成绩的标准差
其中正确结论的编号为( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租。该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数
的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
lnx-x+
,其中a>0.
(1)若f(x)在(0,+∞)上存在极值点,求a的取值范围;
(2)设a∈(1,e],当x1∈(0,1),x2∈(1,+∞)时,记f(x2)-f(x1)的最大值为M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
,且点
到椭圆C的两焦点的距离之和为
.
![]()
(Ⅰ)求椭圆
的标准方程;
(Ⅱ) 若
,
是椭圆
上的两个点,线段
的中垂线
的斜率为
,且直线
与
交于点
,求证:点
在直线
上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,侧面
底面
,底面
是平行四边形,
,
,
,
为
的中点,点
在线段
上.
![]()
(Ⅰ)求证:
;
(Ⅱ)试确定点
的位置,使得直线
与平面
所成的角和直线
与平面
所成的角相等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com