精英家教网 > 高中数学 > 题目详情
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点P(1,
3
2
),离心率e=
1
2
,求椭圆C的方程.
考点:椭圆的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点P(1,
3
2
),离心率e=
1
2
,可得
1
a2
+
9
4
b2
=1
c
a
=
1
2
,求出a,b,即可求出椭圆C的方程.
解答: 解:∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点P(1,
3
2
),离心率e=
1
2

1
a2
+
9
4
b2
=1
c
a
=
1
2

∴c=1,a=2,
∴b=
a2-c2
=
3

∴椭圆C的方程
x2
4
+
y2
3
=1
点评:本题重点考查椭圆的标准方程与性质,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦点分别为F1,F2,上顶点为B.Q为抛物线y2=12x的焦点,且
F1B
QB
=0,2
F1F2
+
QF1
=0.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过定点P(0,2)的直线l与椭圆C交于M,N两点(M在P,N之间),设直线l的斜率为k(k>0),在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+x2(a为常实数).
(1)若a=-2,求函数f(x)的单调区间;
(2)若当x∈[1,e]时,f(x)≤a+2恒成立,求实数a的取值范围;
(3)求函数f(x)在[1,e]上的最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
1
x

(1)判断函数f(x)的奇偶性,并加以证明;
(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;
(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于
11a-2
2a
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a,b,c分别为∠A,∠B,∠C的对边.
(1)若∠A=45°,a=4
2
,c=4,求∠C;
(2)若a2+c2-b2=ac,求∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1+a2=16且Sn=2Sn-1+n+4(n≥2,n∈N*).
(1)求数列{an}的通项公式an
(Ⅱ)令bn=nan,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c成等比数列,公比为3,且a,b+2,c成等差数列,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
7x-3
x
在[
1
2
,3]上的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O是坐标原点,两定点A,B满足|
OA
|=|
OB
|=
OA
OB
=2,则点集{P|
OP
=x
OA
+y
OB
,|x|+|y|≤1,x,y∈R}所表示的区域的面积是
 

查看答案和解析>>

同步练习册答案