精英家教网 > 高中数学 > 题目详情
在△ABC中,已知a,b,c分别为∠A,∠B,∠C的对边.
(1)若∠A=45°,a=4
2
,c=4,求∠C;
(2)若a2+c2-b2=ac,求∠B.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)利用正弦定理列出关系式,将sinA,a,c的值代入求出sinC的值,即可确定出C的度数;
(2)利用余弦定理表示出cosB,将已知等式代入计算求出cosB的值,即可确定出B的度数.
解答: 解:(1)∵∠A=45°,a=4
2
,c=4,
∴由正弦定理
a
sinA
=
c
sinC
得:sinC=
csinA
a
=
2
2
4
3
=
1
2

∵∠C为三角形的内角,
∴∠C=30°;
(2)∵a2+c2-b2=ac,
∴cosB=
a2+c2-b2
2ac
=
1
2

∵∠B为三角形的内角,
∴∠B=60°.
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)的导数f′(x)=3x2-2(a+1)x+a-2,且f(0)=2a,当a>2时,求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+e-x
(1)判断并证明f(x)的单调性;
(2)若et[f(2t)+2]+mf(t)≥0对于t∈[0,1]恒成立,求实数m的取值范围;
(3)设函数g(x)=[f(x)-e-x-a]2+[f(x)-ex-a]2(0<a<2),求函数g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过两条直线3x+4y-5=0与2x-3y+8=0的交点M,且平行于直线2x+y+5=0的直线方程.(结果写一般方程形式)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子里装有标号为1,2,…,n的n(n>2且n∈N*)张标签,现随机地从盒子里无放回地抽取两张标签,记X为这两张标签上的数字之和,若X=3的概率为
1
3

(1)求n的值;
(2)求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点P(1,
3
2
),离心率e=
1
2
,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

用五点作图法画出函数y=1-sinx,x∈[0,2π]的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C对边分别是a,b,c.若2sin2(A+B)=3cosC,c=
7
,S△ABC=
3
2
3
,则角C=
 
;a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
①已知向量
OP1
OP2
OP3
满足条件
OP1
+
OP2
+
OP3
=0,且|
OP1
|=|
OP2
|=|
OP3
|=1,则△P1P2P3为正三角形;
②已知a>b>c,若不等式
1
a-b
+
1
b-c
k
a-c
恒成立,则k∈(0,2);
③曲线y=
1
3
x3在点(1,
1
3
)处切线与直线x+y-3=0垂直;
④若平面α⊥平面γ,平面β∥平面γ,则α∥β.
其中正确命题的序号是
 

查看答案和解析>>

同步练习册答案