精英家教网 > 高中数学 > 题目详情
1.已知幂函数f(x)=(a2-a+1)x${\;}^{\frac{9+a}{5}}$(a∈Z)是偶函数,且在(0,+∞)上为增函数,试求实数a的值.

分析 根据幂函数的定义、图象与性质,列出方程求出a的值,再验证是否满足题意即可.

解答 解:∵f(x)=(a2-a+1)x${\;}^{\frac{9+a}{5}}$(a∈Z)是幂函数,
∴a2-a+1=1,
即a2-a=0,
解得a=0,或a=1;
又f(x)是偶函数,且在(0,+∞)上为增函数,
当a=0时,f(x)=${x}^{\frac{9}{5}}$,不满足题意;
当a=1时,f(x)=x2,满足题意;
∴a的值1.

点评 本题考查了幂函数的定义、图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设0<α<$\frac{π}{2}$,$\sqrt{3}$tan($\frac{π}{3}-α$)=$\frac{1-sinα}{sinα}$.求α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知关于x的不等式ax+$\frac{1}{x}$<3的解集是{x|$\frac{1}{2}$<x<1},那么a的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若f(x)为偶函数,则f($\sqrt{2}$+1)-f($\frac{1}{1-\sqrt{2}}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.计算$\root{4}{(\sqrt{2}-2)^{4}}$=2-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:?x∈[0,+∞),($\frac{1}{2}$)x<m;命题q:?x∈R,x2+2>m2
(1)若(¬p)∧q为真命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-2x2+mx-3为区间(-5,-3+n)内的偶函数.
(1)求实数m,n的值;
(2)证明:f(x)在区间(-5,0]内是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x|m-x|(x∈R),且f(4)=0.
(1)求实数m的值;
(2)作出函数f(x)的图象并判断其零点个数;
(3)根据图象指出f(x)的单调递减区间;
(4)根据图象写出不等式f(x)>0的解集;
(5)求集合M={m|使方程f(x)=m有三个不相等的实根}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x+$\frac{4}{x}$,x∈(0,+∞).
(1)求证:f(x)在(0,2)上是减函数,在(2,+∞)上是增函数;
(2)求f(x)在(0,+∞)上的最小值和值域.

查看答案和解析>>

同步练习册答案