精英家教网 > 高中数学 > 题目详情
15.某工厂生产商品M,若每件定价80元,则每年可销售80万件,税务部分对市场销售的商品要征收附加费,为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率,据市场调查,若政府对商品M征收的税率为P%(即每百元征收P元)时,每年的销售量减少10P万件,据此,问:
(1)若税务部门对商品M每年所收税金不少于96万元,求P的范围;
(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P值;
(3)若仅考虑每年税收金额最高,又应如何确定P值.

分析 (1)对商品A的附加税率为p%,所以可销售80-10p万件,销售额为6400-800p万元,由此能求出p的范围.
(2)销售额为g(P)=6400-800p,2≤p≤6.利用单调递减即可求解判断.
(3)每年所获的税金k(p)=64p-8p2万元,根据二次函数性质求解即可.

解答 解:(1)对商品A的附加税率为p%,
所以可销售 80-10p 万件,销售额为6400-800p万元,
所以税额为64p-8p2万元,
64p-8p2≥96,
所以(p-2)(p-6)≤0,
所以p的范围2≤p≤6.
(2)∵销售额为g(P)=6400-800p,2≤p≤6.单调递减
∴g(P)=6400-800p,最大值为g(2)=4=6400-1600=4800万元,
此时p=2
(3)每年所获的税金k(p)=64p-8p2万元,
根据二次函数的性质得出:p=4时,金k(p)=64p-8p2取最大值.
所以k(p)取最大值时,p=4

点评 本题考查p的取值范围的求法,二次个数的单调性,最大值问题,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.A、B、C是同班同学,其中一个是班长,一个是学习委员,一个是小组组长,现在知道:C比组长年龄大,学习委员比B小,A和学习委员不同岁,由此可以判断担任班长的同学是B.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北邢台市高一上学期月考一数学试卷(解析版) 题型:填空题

已知全集,集合,则右图中阴影部分所表示的集合为________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左、右顶点为A,B,左、右焦点为F1,F2,|AB|=4,|F1F2|=2$\sqrt{3}$.直线y=kx+m(k>0)交椭圆E于C,D两点,与线段F1F2、椭圆短轴分别交于M,N两点(M,N不重合),且|CM|=|DN|.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线AD,BC的斜率分别为k1,k2,求$\frac{{k}_{1}}{{k}_{2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知棱长为2的正方体ABCD-GPHF截去一个多面体后,所得几何体如图所示,点E在GP上,且EG=1.
(1)求证:AF⊥CE;
(2)求多面体EFG-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.平面直角坐标系xOy中,过椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)过右焦点的直线$x+y-\sqrt{3}=0$交M于A,B两点,P为AB的中点,且OP的斜率为$\frac{1}{2}$.
(1)求椭圆M的方程;
(2)若C,D为椭圆M上的两点,且CD⊥AB,求|CD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=a-be-x(e是自然对数的底数,e=2.71828…)的图象在x=0处的切线方程为y=x.
(Ⅰ) 求a,b的值;
(Ⅱ) 若g(x)=mlnx-e-x+$\frac{1}{2}$mx2-(m+1)x+1(m>0),求函数h(x)=g(x)-f(x)的单调区间;
(Ⅲ) 若正项数列{an}满足a1=$\frac{1}{2}$,${a}_{n}{e}^{-{a}_{n+1}}$=f(an)=f(an)证明:数列{an}是递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若双曲线$\frac{{x}^{2}}{8}$-y2=1过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点,且它们的离心率互为倒数.
(I)求椭圆C的标准方程;
(Ⅱ)如图,椭圆C的左、右顶点分别为A1,A2点M(1,0)的直线l与椭圆C交于P、Q两点,设直线A1P与A2Q的斜率别为k1,k2试问,是否存在实数m,使得k1+mk2=0?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax+$\frac{b}{x}$+2-2a(a>0)的图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)证明:1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2n-1}$>$\frac{1}{2}$(2n+1)+$\frac{n}{2n+1}$(n∈N*).

查看答案和解析>>

同步练习册答案