精英家教网 > 高中数学 > 题目详情
2.已知数列{an}满足a1=3,an+1=2an-n+1,数列{bn}满足b1=2,bn+1=bn+an-n.
(1)证明:{an-n}为等比数列;
(2)数列{cn}满足${c_n}=\frac{{{a_n}-n}}{{({{b_n}+1})({{b_{n+1}}+1})}}$,求数列{cn}的前n项和Tn,求证:Tn$<\frac{1}{3}$.

分析 (1)an+1=2an-n+1,可得an+1-(n+1)=2(an-n),即bn+1=2bn.即可证明.
(2)由(1)可得:bn=an-n=2n.可得${c_n}=\frac{{{a_n}-n}}{{({{b_n}+1})({{b_{n+1}}+1})}}$=$\frac{{2}^{n}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$.利用裂项求和方法、数列的单调性即可证明.

解答 证明:(1)∵an+1=2an-n+1,∴an+1-(n+1)=2(an-n),即bn+1=2bn
∵a1-1=2,∴{an-n}是以2为首项,2为公比的等比数列.
(2)由(1)可得:bn=an-n=2n
∴${c_n}=\frac{{{a_n}-n}}{{({{b_n}+1})({{b_{n+1}}+1})}}$=$\frac{{2}^{n}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$.
∴Tn=$(\frac{1}{2+1}-\frac{1}{{2}^{2}+1})$+$(\frac{1}{{2}^{2}+1}-\frac{1}{{2}^{3}+1})$+…+$(\frac{1}{{2}^{n}+1}-\frac{1}{{2}^{n+1}+1})$
=$\frac{1}{3}-\frac{1}{{2}^{n+1}+1}$$<\frac{1}{3}$.

点评 本题考查了数列递推关系、等比数列的定义通项公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.下列四个命题中,假命题是④(填序号).
①经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示;
②经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
③与两条坐标轴都相交的直线不一定可以用方程$\frac{x}{a}$+$\frac{y}{b}$=1表示;
④经过点Q(0,b)的直线都可以表示为y=kx+b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.四棱锥P-ABCD,侧面PCD为边长为2的正三角形,底面ABCD为对角线互相垂直的等腰梯形,M为AD的中点,$PO=\sqrt{2}$. 
(Ⅰ)求证:PM⊥BC;
(Ⅱ)若△PAB的面积为$\frac{{\sqrt{5}}}{2}$,求三棱锥C-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=2,$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在地面上有一旗杆OP,为测得它的高度h,在地面上取一线段AB,
AB=20m,在A处测得P点的仰角∠OAP=30°,在B点测得P点的仰角∠OBP=45°,又测得∠AOB=30°,求旗杆的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某学校有5个班级的同学一起到某工厂参加社会实践活动,该工厂5个不同的车间供学生选择,每个班级任选一个车间进行时间学习,则恰有2个班级选择甲车间,1个班级选择乙车间的方案有270种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直角△ABC的三边a,b,c,满足3≤a≤5≤b≤8≤c≤9,则△ABC面积的最大值是5$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴端点与焦点分别为双曲线E的焦点与实轴端点,若椭圆D与双曲线E的一个交点在直线y=2x上,则椭圆D的离心率为(  )
A.$\sqrt{2}$-1B.$\sqrt{3}$-$\sqrt{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{3-2\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P在抛物线x2=4y上,F为抛物线焦点,|PF|=5,以P为圆心|PF|为半径的圆交x轴于A,B两点,则$\overrightarrow{AP}$•$\overrightarrow{AB}$=(  )
A.9B.12C.18D.32

查看答案和解析>>

同步练习册答案