12£®ÏÂÁÐËĸöÃüÌâÖУ¬¼ÙÃüÌâÊǢܣ¨ÌîÐòºÅ£©£®
¢Ù¾­¹ý¶¨µãP£¨x0£¬y0£©µÄÖ±Ïß²»Ò»¶¨¶¼¿ÉÒÔÓ÷½³Ìy-y0=k£¨x-x0£©±íʾ£»
¢Ú¾­¹ýÁ½¸ö²»Í¬µÄµãP1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©µÄÖ±Ïß¶¼¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©À´±íʾ£»
¢ÛÓëÁ½Ìõ×ø±êÖá¶¼ÏཻµÄÖ±Ïß²»Ò»¶¨¿ÉÒÔÓ÷½³Ì$\frac{x}{a}$+$\frac{y}{b}$=1±íʾ£»
¢Ü¾­¹ýµãQ£¨0£¬b£©µÄÖ±Ïß¶¼¿ÉÒÔ±íʾΪy=kx+b£®

·ÖÎö ¢Ù£¬¾­¹ý¶¨µãP£¨x0£¬y0£©Ð±Âʲ»´æÔÚµÄÖ±Ïß²»¿ÉÒÔÓ÷½³Ìy-y0=k£¨x-x0£©±íʾ£»
¢Ú£¬µ±x1¡Ùx2ʱ£¬¼´Ð±ÂÊ´æÔÚ¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©À´±íʾ£¬µ±x1=x2ʱ£¬Ö±Ïß·½³ÌΪx=x1£¬¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©À´±íʾ£»
¢Û£¬µ±Ö±Ïß¹ýÔ­µãʱ£¬Ö±Ïß²»¿ÉÒÔÓ÷½³Ì$\frac{x}{a}$+$\frac{y}{b}$=1±íʾ£»
¢Ü£¬¾­¹ýµãQ£¨0£¬b£©µÄÖ±Ïߣ¬µ±Ð±Âʲ»´æÔÚʱ£¬²»¿ÉÒÔ±íʾΪy=kx+b£®

½â´ð ½â£º¶ÔÓÚ¢Ù£¬¾­¹ý¶¨µãP£¨x0£¬y0£©Ð±Âʲ»´æÔÚµÄÖ±Ïß²»¿ÉÒÔÓ÷½³Ìy-y0=k£¨x-x0£©±íʾ£¬¹Ê¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬¾­¹ýÁ½¸ö²»Í¬µÄµãP1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©µÄÖ±ÏßÓÐÁ½ÖÖÇé¿ö£ºµ±x1¡Ùx2ʱ£¬¼´Ð±ÂÊ´æÔÚ¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©À´±íʾ£¬µ±x1=x2ʱ£¬Ö±Ïß·½³ÌΪx=x1£¬¿ÉÒÔÓ÷½³Ì£¨y-y1£©£¨x2-x1£©=£¨x-x1£©£¨y2-y1£©À´±íʾ£¬¹Ê¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬µ±Ö±Ïß¹ýÔ­µãʱ£¬Ö±Ïß²»¿ÉÒÔÓ÷½³Ì$\frac{x}{a}$+$\frac{y}{b}$=1±íʾ£¬¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬¾­¹ýµãQ£¨0£¬b£©µÄÖ±Ïߣ¬µ±Ð±Âʲ»´æÔÚʱ£¬²»¿ÉÒÔ±íʾΪy=kx+b£¬¹Ê¢Ü´íÎó£®
¹Ê´ð°¸Îª£º¢Ü£®

µãÆÀ ±¾Ì⿼²éÁËÃüÌâÕæ¼ÙµÄÅж¨£¬Éæ¼°µ½ÁËÖ±Ïß·½³ÌµÄ±í´ïʽ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈôÈ«¼¯U=R£¬¼¯ºÏA={x|-1¡Üx£¼1}£¬B={x|x¡Ü0»òx£¾2}£¬Ôò¼¯ºÏA¡È∁UB=£¨¡¡¡¡£©
A£®{x|0£¼x£¼1}B£®{x|-1¡Üx¡Ü2}C£®{x|-1£¼x£¼2}D£®{x|0¡Üx¡Ü1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èôº¯Êýf£¨x£©=$\frac{2-ax}{3x+5}$µÄÖµÓòΪ£¨-¡Þ£¬1£©¡È£¨1£¬+¡Þ£©£¬ÔòaµÄÖµ=-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{{\begin{array}{l}{2x-y-2¡Ü0}\\{x-2y+2¡Ý0}\\{x+y-2¡Ý0}\end{array}}\right.$Èôz=mx+yÈ¡µÃ×î´óֵʱµÄ×îÓŽâÓÐÎÞÇî¶à¸ö£¬ÔòʵÊýmµÄÖµÊÇ£¨¡¡¡¡£©
A£®$-\frac{1}{2}$B£®$\frac{1}{2}$C£®-2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Îåλͬѧ°´ÏÂÁÐÒªÇóÕ¾Ò»ºáÅÅ£¬·Ö±ðÓжàÉÙÖÖ²»Í¬µÄÕ¾·¨£¿
£¨1£©¼×ÒÒ±ØÐëÏàÁÚ
£¨2£©¼×ÒÒ²»ÏàÁÚ
£¨3£©¼×²»Õ¾Öм䣬ÒÒ²»Õ¾Á½¶Ë
£¨4£©¼×£¬ÒÒ¾ùÔÚ±ûµÄͬ²à£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªf£¨x£©=$\frac{1}{2}$x+sin£¨x+¦Õ£©Âú×ãg£¨x£©=f£¨x£©•$\frac{{2}^{x}-1}{{2}^{x}+1}$Ϊżº¯ÊýÇÒg£¨1£©£¼0£¬Ôòº¯Êýy=f£¨x£©µÄͼÏó´óÖÂΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬×ó¡¢ÓÒ½¹µã·Ö±ðΪԲF1¡¢F2£¬MÊÇCÉÏÒ»µã£¬|MF1|=2£¬ÇÒ|$\overrightarrow{M{F}_{1}}$||$\overrightarrow{M{F}_{2}}$|=2$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©µ±¹ýµãP£¨4£¬1£©µÄ¶¯Ö±ÏßlÓëÍÖÔ²CÏཻÓÚ²»Í¬Á½µãA¡¢Bʱ£¬Ïß¶ÎABÉÏÈ¡µãQ£¬ÇÒQÂú×ã|$\overrightarrow{AP}$||$\overrightarrow{QB}$|=|$\overrightarrow{AQ}$||$\overrightarrow{PB}$|£¬Ö¤Ã÷µãQ×ÜÔÚij¶¨Ö±ÏßÉÏ£¬²¢Çó³ö¸Ã¶¨Ö±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵĵ¥µ÷µÝÔöº¯Êý£¬ÔòÏÂÁÐËĸöÃüÌ⣺¢ÙÈôf£¨x0£©£¾x0£¬Ôòf[f£¨x0£©]£¾x0£»¢ÚÈôf[f£¨x0£©]£¾x0£¬Ôòf£¨x0£©£¾x0£»¢ÛÈôf£¨x£©ÊÇÆæº¯Êý£¬Ôòf[f£¨x£©]Ò²ÊÇÆæº¯Êý£»¢ÜÈôf£¨x£©ÊÇÆæº¯Êý£¬Ôòf£¨x1£©+f£¨x2£©=0?x1+x2=0£¬ÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=3£¬an+1=2an-n+1£¬ÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=bn+an-n£®
£¨1£©Ö¤Ã÷£º{an-n}ΪµÈ±ÈÊýÁУ»
£¨2£©ÊýÁÐ{cn}Âú×ã${c_n}=\frac{{{a_n}-n}}{{£¨{{b_n}+1}£©£¨{{b_{n+1}}+1}£©}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£¬ÇóÖ¤£ºTn$£¼\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸