精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=$\frac{2-ax}{3x+5}$的值域为(-∞,1)∪(1,+∞),则a的值=-3.

分析 根据反函数的定义域即为原函数的值域,即可求出答案

解答 解:y=$\frac{2-ax}{3x+5}$,
即3xy+5y=2-ax,
∴(3y+a)x=2-5y,
∴x=$\frac{2-5y}{3y+a}$,
∵函数f(x)=$\frac{2-ax}{3x+5}$的值域为(-∞,1)∪(1,+∞),
∴3y+a=0,
即a=-3y=-3,
故答案为:-3.

点评 本题求出函数的反函数,根据反函数的定义域即为原函数的值域,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2$\sqrt{3}$sin2($\frac{π}{4}$+x)+2sin($\frac{π}{4}$+x)cos($\frac{π}{4}$+x).
(Ⅰ)求函数f(x)的单调递增区间及其对称中心;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c且角A满足f(A)=$\sqrt{3}$+1,若a=3,BC边上的中线长为3,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a满足方程xex=4,b满足方程xlnx=4,则函数f(x)=log${\;}_{\sqrt{ab}}$(x+4)-(ab)x(  )
A.仅有一个或没有零点B.有两个正零点
C.有一个正零点和一个负零点D.有两个负零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-2m|-|x+m|(m>0).
(1)当m=2时,求不等式f(x)≥1的解集;
(2)对于任意实数x,t,不等式f(x)≤|t+3|+|t-2|恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设关于x的不等式x2-(b+2)x+c<0的解集为{x|2<x<3}.
(1)设不等式bx2-(c+1)x-c>0的解集为A,集合B=[-2,2),求A∩B;
(2)若x>1,求$\frac{{{x^2}-bx+c}}{x-1}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(A,$\sqrt{3}$Acosωx),$\overrightarrow{b}$=($\frac{1}{A}$+cos2ωx,sinωx)(A≠0,ω>0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$在区间[m,n]上单调,且|m-n|的最大值是$\frac{π}{2}$,函数f(x)的图象在y轴上的截距为$\frac{3}{2}$,则f(x)的一个对称中心为(  )
A.(-$\frac{π}{12}$,0)B.(-$\frac{π}{12}$,$\frac{5}{4}$)C.(-$\frac{5π}{12}$,0)D.($\frac{5}{6}$π,$\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$\overrightarrow{OA}$=(1,1)在$\overrightarrow{OB}$=(4,3)上的投影为(  )
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{1}{3}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列四个命题中,假命题是④(填序号).
①经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示;
②经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
③与两条坐标轴都相交的直线不一定可以用方程$\frac{x}{a}$+$\frac{y}{b}$=1表示;
④经过点Q(0,b)的直线都可以表示为y=kx+b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.四棱锥P-ABCD,侧面PCD为边长为2的正三角形,底面ABCD为对角线互相垂直的等腰梯形,M为AD的中点,$PO=\sqrt{2}$. 
(Ⅰ)求证:PM⊥BC;
(Ⅱ)若△PAB的面积为$\frac{{\sqrt{5}}}{2}$,求三棱锥C-PAB的体积.

查看答案和解析>>

同步练习册答案