精英家教网 > 高中数学 > 题目详情
1.若a满足方程xex=4,b满足方程xlnx=4,则函数f(x)=log${\;}_{\sqrt{ab}}$(x+4)-(ab)x(  )
A.仅有一个或没有零点B.有两个正零点
C.有一个正零点和一个负零点D.有两个负零点

分析 作出y=ex,y=lnx,y=$\frac{4}{x}$的函数图象,根据三个函数的对称关系得出ab=4,再作出y=log2(x+4)与y=4x的函数图象,根据图象判断结论.

解答 解:作出y=ex,y=lnx,y=$\frac{4}{x}$的函数图象,

设A(a,$\frac{4}{a}$),B(b,$\frac{4}{b}$),
∵y=lnx与y=ex关于直线y=x对称,y=$\frac{4}{x}$关于直线y=x对称,
∴A,B关于直线y=x对称,∴$\left\{\begin{array}{l}{a=\frac{4}{b}}\\{b=\frac{4}{a}}\end{array}\right.$,即ab=4.
∴f(x)=log2(x+4)-4x
作出y=log2(x+4)与y=4x的函数图象,如图所示:

由图象可知f(x)有一正一负两个零点.
故选C.

点评 本题考查了函数零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设复数z=(2+i)2(i为虚数单位),则z的共轭复数为3-4i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+2x-1,则不等式f(x)+7<0的解集为(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若全集U=R,集合A={x|-1≤x<1},B={x|x≤0或x>2},则集合A∪∁UB=(  )
A.{x|0<x<1}B.{x|-1≤x≤2}C.{x|-1<x<2}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)对任意的x∈R,都有f(-x)+f(x)=-6,且当x≥0时,f(x)=2x-4,定义在R上的函数g(x)=a(x-a)(x+a+1),两函数同时满足:?x∈R,都有f(x)<0或g(x)<0;?x∈(-∞,-1),f(x)•g(x)<0,则实数a的取值范围为(  )
A.(-3,0)B.$(-3,-\frac{1}{2})$C.(-3,-1)D.(-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}$sin2x+sinxcosx-$\frac{\sqrt{3}}{2}$
(1)求函数y=f(x)在[0,$\frac{π}{2}$]上的单调递增区间;
(2)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,求证:存在无穷多个互不相同的整数x0,使得g(x0)>$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某初级中学篮球队假期集训,集训前共有8个篮球,其中4个是新的(即没有用过的球),4个是旧的(即至少用过一次的球),毎次训练都从中任意取出2个球,用完后放回,则第二次训练时恰好取到1个新球的概率为(  )
A.$\frac{24}{49}$B.$\frac{4}{7}$C.$\frac{25}{49}$D.$\frac{51}{98}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\frac{2-ax}{3x+5}$的值域为(-∞,1)∪(1,+∞),则a的值=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{1}{2}$,左、右焦点分别为圆F1、F2,M是C上一点,|MF1|=2,且|$\overrightarrow{M{F}_{1}}$||$\overrightarrow{M{F}_{2}}$|=2$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$.
(1)求椭圆C的方程;
(2)当过点P(4,1)的动直线l与椭圆C相交于不同两点A、B时,线段AB上取点Q,且Q满足|$\overrightarrow{AP}$||$\overrightarrow{QB}$|=|$\overrightarrow{AQ}$||$\overrightarrow{PB}$|,证明点Q总在某定直线上,并求出该定直线的方程.

查看答案和解析>>

同步练习册答案