分析 设c边所对的角为C,运用三角形的面积公式和放缩法,以及勾股定理,即可得到所求最大值.
解答 解:设c边所对的角为C,
则△ABC的面积S=$\frac{1}{2}$absinC≤$\frac{1}{2}$•5•8•sin90°=20,
当且仅当a=5,b=8,c=$\sqrt{25+64}$=$\sqrt{89}$取得等号.
但由于8≤c≤9,等号不成立,
又a的最大值为5,c的最大值为9,可得b=$\sqrt{81-25}$=2$\sqrt{14}$,
则△ABC的面积的最大值为$\frac{1}{2}$ab=$\frac{1}{2}$×5×2$\sqrt{14}$=5$\sqrt{14}$.
故答案为:5$\sqrt{14}$.
点评 本题考查三角形的面积的最值求法,注意运用放缩法,以及勾股定理,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {1,2} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com