精英家教网 > 高中数学 > 题目详情
4.如图,四棱锥P-ABCD中,底面ABCD边长为4的正方形,PA=PD=2$\sqrt{2}$,平面PAD⊥平面PCD;
(Ⅰ)求证:AP⊥平面PCD;
(Ⅱ)在线段PD上是否存在一点E,使得三棱锥E-BCD的体积为$\frac{8}{3}$,若存在,求出$\frac{PE}{ED}$的值;若不存在,请说明理由.

分析 (Ⅰ)由∴PA2+PD2=AD2,得AP⊥DP.由平面PAD⊥平面PCD得CD⊥面PAD,即可证得AP⊥平面PCD.
(Ⅱ)三棱锥E-BCD的体积为V=$\frac{1}{3}{s}_{△BCD}×h=\frac{1}{3}×\frac{1}{2}×4×4×h=\frac{8}{3}$,得h=1;在△ADP中,边AD上的高就是P到面ABCD的距离d,而d=$\frac{1}{2}AD=2$,可得$\frac{PE}{ED}$=1.

解答 (Ⅰ)证明:∵$\left\{\begin{array}{l}{PA=PD=2\sqrt{2}}\\{AD=4}\end{array}\right.$,∴PA2+PD2=AD2,∴AP⊥DP.
∵$\left\{\begin{array}{l}{面PAD⊥面ABCD}\\{面PAD∩面ABCD=AD}\\{CD?面ABCD}\\{CD⊥AD}\end{array}\right.$,∴CD⊥面PAD,
又∵AP?面ADP,∴AP⊥CD,
且CD∩PD=D,
∴AP⊥平面PCD.
(Ⅱ)如图,设三棱锥E-BCD的高为h,
三棱锥E-BCD的体积为V=$\frac{1}{3}{s}_{△BCD}×h=\frac{1}{3}×\frac{1}{2}×4×4×h=\frac{8}{3}$,得h=1.
在△ADP中,边AD上的高就是P到面ABCD的距离d,而d=$\frac{1}{2}AD=2$,
∴E是边PD的中点,∴$\frac{PE}{ED}$=1.

点评 本题考查了空间线面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.直角△ABC的三边a,b,c,满足3≤a≤5≤b≤8≤c≤9,则△ABC面积的最大值是5$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知全集U=Z,集合A={x|0<x<5,x∈U},B={x|x≤1,X∈U},则A∩(∁UB)={2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P在抛物线x2=4y上,F为抛物线焦点,|PF|=5,以P为圆心|PF|为半径的圆交x轴于A,B两点,则$\overrightarrow{AP}$•$\overrightarrow{AB}$=(  )
A.9B.12C.18D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一条弦所在的直线方程是x-y+5=0,弦的中点坐标是M(-4,1),则椭圆的离心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=xlnx-\frac{a}{2}{x^2}({a∈R})$.
(1)当a=1时,求函数在点(1,-$\frac{1}{2}$)处的切线方程;
(2)若函数g(x)=f(x)-x有两个极值点x1,x2,求a的取值范围.
(3)在(2)的条件下,求证:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|(5x+1)(x-4)<0},B={x|x<2},则A∩B等于(  )
A.(-∞,4)B.$({-\frac{1}{5},2})$C.(2,4)D.$({-∞,-\frac{1}{5}})∪({2,4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow a=({1,cosx}),\overrightarrow b=({\frac{1}{3},sinx}),x∈({0,π})$,$\overrightarrow a∥\overrightarrow b$
(1)求$\frac{{sin(\frac{π}{2}+x)+cos(\frac{3π}{2}+x)}}{{cos(\frac{5π}{2}-x)+sin(\frac{7π}{2}-x)}}$的值;
(2)求sin2x+sinxcosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,已知c=10,A=45°,C=30°,求b及S△ABC

查看答案和解析>>

同步练习册答案