精英家教网 > 高中数学 > 题目详情
13.已知$\overrightarrow a=({1,cosx}),\overrightarrow b=({\frac{1}{3},sinx}),x∈({0,π})$,$\overrightarrow a∥\overrightarrow b$
(1)求$\frac{{sin(\frac{π}{2}+x)+cos(\frac{3π}{2}+x)}}{{cos(\frac{5π}{2}-x)+sin(\frac{7π}{2}-x)}}$的值;
(2)求sin2x+sinxcosx的值.

分析 由已知向量的坐标结合向量共线可得tanx=$\frac{1}{3}$.
(1)利用三角函数的诱导公式化简,进一步化弦为切求值;
(2)把分母看作sin2x+cos2x,分子分母同时除以cos2x,化为正切得答案.

解答 解:∵$\overrightarrow a∥\overrightarrow b$,∴sinx=$\frac{1}{3}cosx$,得tanx=$\frac{1}{3}$.
(1)$\frac{{sin(\frac{π}{2}+x)+cos(\frac{3π}{2}+x)}}{{cos(\frac{5π}{2}-x)+sin(\frac{7π}{2}-x)}}=\frac{cosx+sinx}{sinx-cosx}=\frac{1+tanx}{tanx-1}=\frac{{1+\frac{1}{3}}}{{\frac{1}{3}-1}}=-2$;
(2)${sin^2}x+sinxcosx=\frac{{{{sin}^2}x+sinxcosx}}{{{{sin}^2}x+{{cos}^2}x}}=\frac{{{{tan}^2}x+tanx}}{{{{tan}^2}x+1}}=\frac{{{{(\frac{1}{3})}^2}+\frac{1}{3}}}{{{{({\frac{1}{3}})}^2}+1}}=\frac{2}{5}$.

点评 本题考查平面向量的坐标运算,考查运用诱导公式化简求值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知$sinθ+cosθ=\frac{1}{5}$,$θ∈(\frac{π}{2},π)$,则tanθ=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD中,底面ABCD边长为4的正方形,PA=PD=2$\sqrt{2}$,平面PAD⊥平面PCD;
(Ⅰ)求证:AP⊥平面PCD;
(Ⅱ)在线段PD上是否存在一点E,使得三棱锥E-BCD的体积为$\frac{8}{3}$,若存在,求出$\frac{PE}{ED}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线x+y-2=0与直线x-y=0的交点P在角α的终边上,则tanα的值为(  )
A.1B.-1C.$\frac{1}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的两个焦点为F1(-$\sqrt{5}$,0),F2($\sqrt{5}$,0),M是椭圆上一点,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0,|$\overrightarrow{M{F}_{1}}$|•|$\overrightarrow{M{F}_{2}}$|=8.
(1)求椭圆的方程;
(2)点P是椭圆上任意一点,A1、A2分别是椭圆的左、右顶点,直线PA1,PA2与直线x=$\frac{3\sqrt{5}}{2}$分别交于E,F两点,试证:以EF为直径的圆交x轴于定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U=R,集合A={x|x≥-1},集合B={x|y=lg(x-2)},则A∩(∁UB)=(  )
A.[-1,2)B.[-1,2]C.[2,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数x,y满足$\left\{\begin{array}{l}{2x-y≥0}\\{x+2y-5≤0}\\{y≥1}\end{array}\right.$,则z=$\frac{{x}^{2}+{y}^{2}}{xy}$大值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC中,角A,B,C所对的边分别为a,b,c,acosC+ccosA=2bcosB.
(1)求角B的值;
(2)若a=4,b=6,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如右图抛物线顶点在原点,圆(x-2)2+y2=22的圆心恰是抛物线的焦点,
(Ⅰ)求抛物线的方程;
(Ⅱ)一直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A、B、C、D四点,求|AB|+|CD|的值.

查看答案和解析>>

同步练习册答案