精英家教网 > 高中数学 > 题目详情
1.若直线x+y-2=0与直线x-y=0的交点P在角α的终边上,则tanα的值为(  )
A.1B.-1C.$\frac{1}{2}$D.$\sqrt{5}$

分析 求出直线的交点坐标,结合三角函数的定义进行求解即可.

解答 解:由$\left\{\begin{array}{l}{x+y-2=0}\\{x-y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即P(1,1),
∵交点P在角α的终边上,
∴tanα=$\frac{1}{1}$=1,
故选:A

点评 本题主要考查三角函数的定义,求出交点坐标是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知椭圆D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴端点与焦点分别为双曲线E的焦点与实轴端点,若椭圆D与双曲线E的一个交点在直线y=2x上,则椭圆D的离心率为(  )
A.$\sqrt{2}$-1B.$\sqrt{3}$-$\sqrt{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{3-2\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P在抛物线x2=4y上,F为抛物线焦点,|PF|=5,以P为圆心|PF|为半径的圆交x轴于A,B两点,则$\overrightarrow{AP}$•$\overrightarrow{AB}$=(  )
A.9B.12C.18D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=xlnx-\frac{a}{2}{x^2}({a∈R})$.
(1)当a=1时,求函数在点(1,-$\frac{1}{2}$)处的切线方程;
(2)若函数g(x)=f(x)-x有两个极值点x1,x2,求a的取值范围.
(3)在(2)的条件下,求证:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|(5x+1)(x-4)<0},B={x|x<2},则A∩B等于(  )
A.(-∞,4)B.$({-\frac{1}{5},2})$C.(2,4)D.$({-∞,-\frac{1}{5}})∪({2,4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}为公差不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式;
(2)若数列{bn}满足$\frac{1}{{b}_{n+1}}$-$\frac{1}{{b}_{n}}$=an(n∈N*),且b1=$\frac{1}{3}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow a=({1,cosx}),\overrightarrow b=({\frac{1}{3},sinx}),x∈({0,π})$,$\overrightarrow a∥\overrightarrow b$
(1)求$\frac{{sin(\frac{π}{2}+x)+cos(\frac{3π}{2}+x)}}{{cos(\frac{5π}{2}-x)+sin(\frac{7π}{2}-x)}}$的值;
(2)求sin2x+sinxcosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=Asin(ωx+φ),x∈R(其中$A>0,ω>0,0<Φ<\frac{π}{2}$)的图象与x轴的交点中,相邻的两个交点之间的距离为$\frac{π}{2}$,且图象上的一个最低点为$M(\frac{2π}{3},-2)$,则f(x)的解析式为(  )
A.$f(x)=2sin(2x+\frac{π}{6})$B.$f(x)=2cos(2x+\frac{π}{6})$C.$f(x)=sin(2x+\frac{π}{3})$D.$f(x)=cos(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证D1F⊥平面ADE.

查看答案和解析>>

同步练习册答案