精英家教网 > 高中数学 > 题目详情
6.已知数列{an}为公差不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式;
(2)若数列{bn}满足$\frac{1}{{b}_{n+1}}$-$\frac{1}{{b}_{n}}$=an(n∈N*),且b1=$\frac{1}{3}$,求数列{bn}的前n项和Tn

分析 (1)设等差数列{an}的公差为d(d≠0),由a2,a9,a30成等比数列可知$({{a_1}+d})({{a_1}+29d})={({{a_1}+8d})^2}$,又a1=5,解得d即可得出.
(2)由数列{bn}满足$\frac{1}{{b}_{n+1}}$-$\frac{1}{{b}_{n}}$=an(n∈N*),可得:$\frac{1}{{b}_{n}}-\frac{1}{{b}_{n-1}}$=an-1(n≥2).且b1=$\frac{1}{3}$,
当n≥2时,$\frac{1}{{b}_{n}}$=$\frac{1}{{b}_{1}}$+$(\frac{1}{{b}_{2}}-\frac{1}{{b}_{1}})$+…+$(\frac{1}{{b}_{n}}-\frac{1}{{b}_{n-1}})$=3+a1+a2+…+an-1,利用等差数列的求和公式即可得出$\frac{1}{{b}_{n}}$=n(n+2).可得bn=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,再利用裂项求和方法即可得出.

解答 解:(1)设等差数列{an}的公差为d(d≠0),
由a2,a9,a30成等比数列可知$({{a_1}+d})({{a_1}+29d})={({{a_1}+8d})^2}$,
又a1=5,解得d=2,∴an=2n+3.
(2)由数列{bn}满足$\frac{1}{{b}_{n+1}}$-$\frac{1}{{b}_{n}}$=an(n∈N*),可得:$\frac{1}{{b}_{n}}-\frac{1}{{b}_{n-1}}$=an-1(n≥2).且b1=$\frac{1}{3}$,
当n≥2时,$\frac{1}{{b}_{n}}$=$\frac{1}{{b}_{1}}$+$(\frac{1}{{b}_{2}}-\frac{1}{{b}_{1}})$+…+$(\frac{1}{{b}_{n}}-\frac{1}{{b}_{n-1}})$
=3+a1+a2+…+an-1=3+$\frac{(n-1)(2n+6)}{2}$=n(n+2).
对b1=$\frac{1}{3}$上式也成立,∴$\frac{1}{{b}_{n}}$=n(n+2).
∴bn=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}$$(\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{3{n}^{2}+5n}{4(n+1)(n+2)}$.

点评 本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知抛物线E:x2=4y的焦点为F,过点F的直线l交抛物线于A,B两点.
(1)若原点为O,求△OAB面积的最小值;
(2)过A,B作抛物线E的切线,分别为l1,l2,若l1与l2交于点P,当l变动时,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{ln|x|}{x}$的图象大致形状是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设$\overrightarrow a,\overrightarrow b$满足$\overrightarrow a=(1,\sqrt{3}),|\overrightarrow b|=1$且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$的值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线x+y-2=0与直线x-y=0的交点P在角α的终边上,则tanα的值为(  )
A.1B.-1C.$\frac{1}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列命题:
①函数y=cos$({x-\frac{3π}{2}})$是奇函数;
②若α、β是第一象限角且α<β,则tanα<tanβ;
③函数y=tan$({2x+\frac{π}{4}})$的图象关于点$({-\frac{3π}{8},0})$对称;
④函数y=2sin$({\frac{π}{4}-2x})$+1的单调递增区间是$[{kπ-\frac{π}{8},kπ+\frac{3π}{8}}]\;({k∈Z})$.
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U=R,集合A={x|x≥-1},集合B={x|y=lg(x-2)},则A∩(∁UB)=(  )
A.[-1,2)B.[-1,2]C.[2,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知过抛物线x2=4y焦点F的直线交抛物线于A、B两点(点A在第一象限),若$\overrightarrow{AF}=3\overrightarrow{FB}$,则直线的方程为(  )
A.$\sqrt{3}x-y-\sqrt{3}=0$B.$x-\sqrt{3}y+\sqrt{3}=0$C.$x-\sqrt{3}y-1=0$D.$\sqrt{3}x-y+1=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an+81}是公比为3的等比数列,其中a1=-78,则数列{|an|}的前100项和为(  )
A.$\frac{{{3^{101}}-16203}}{2}$B.$\frac{{{3^{100}}-15387}}{2}$C.$\frac{{{3^{101}}-15387}}{2}$D.$\frac{{{3^{100}}-16203}}{2}$

查看答案和解析>>

同步练习册答案