精英家教网 > 高中数学 > 题目详情
17.函数f(x)=$\frac{ln|x|}{x}$的图象大致形状是(  )
A.B.C.D.

分析 利用函数的奇偶性排除选项,然后利用特殊值判断即可.

解答 解:函数f(x)=$\frac{ln|x|}{x}$是奇函数,排除A,C,
当x→+∞时,f(x)>0,排除D,
故选:B.

点评 本题考查函数的图象的判断,函数的奇偶性以及特殊点、变化趋势,往往是解答函数图象的有效方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.某学校有5个班级的同学一起到某工厂参加社会实践活动,该工厂5个不同的车间供学生选择,每个班级任选一个车间进行时间学习,则恰有2个班级选择甲车间,1个班级选择乙车间的方案有270种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足约束条件$\left\{\begin{array}{l}x+y-5≤0\\ y≥x+1\\ x≥0\end{array}\right.$,则目标函数z=2x+y-1的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=Asin(ωx+φ)(A>0,ω>0),若f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),且f(x)在区间[$\frac{π}{6}$,$\frac{π}{2}$]上单调,则f(x)的最小正周期是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P在抛物线x2=4y上,F为抛物线焦点,|PF|=5,以P为圆心|PF|为半径的圆交x轴于A,B两点,则$\overrightarrow{AP}$•$\overrightarrow{AB}$=(  )
A.9B.12C.18D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中,已知首项a1>0,公差d>0.若a1+a2≤10,a2+a3≥12,则-3a1+a5的最小值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=xlnx-\frac{a}{2}{x^2}({a∈R})$.
(1)当a=1时,求函数在点(1,-$\frac{1}{2}$)处的切线方程;
(2)若函数g(x)=f(x)-x有两个极值点x1,x2,求a的取值范围.
(3)在(2)的条件下,求证:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}为公差不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式;
(2)若数列{bn}满足$\frac{1}{{b}_{n+1}}$-$\frac{1}{{b}_{n}}$=an(n∈N*),且b1=$\frac{1}{3}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若4-3a-a2i=a2+4ai,则实数a=-4.

查看答案和解析>>

同步练习册答案