分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y-1得y=-2x+z+1,
平移直线y=-2x+z+1,
由图象可知当直线y=-2x+z+1经过点A时,此时z最大.
由$\left\{\begin{array}{l}{x+y-5=0}\\{y=x+1}\end{array}\right.$解得A(2,3),
当目标函数过点(2,3)时,有最大值为2×2+3+1=6.
故答案为:6.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,2) | B. | [-1,2] | C. | [2,+∞) | D. | [-1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com