精英家教网 > 高中数学 > 题目详情
18.曲线y=x•ex在x=1处切线的斜率等于(  )
A.2eB.eC.2D.1

分析 求出函数的导数,然后求解切线的斜率即可.

解答 解:曲线y=x•ex,可得y′=ex+xex
曲线y=x•ex在x=1处切线的斜率:e+e=2e.
故选:A.

点评 本题考查导数的应用,切线的斜率的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(A,$\sqrt{3}$Acosωx),$\overrightarrow{b}$=($\frac{1}{A}$+cos2ωx,sinωx)(A≠0,ω>0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$在区间[m,n]上单调,且|m-n|的最大值是$\frac{π}{2}$,函数f(x)的图象在y轴上的截距为$\frac{3}{2}$,则f(x)的一个对称中心为(  )
A.(-$\frac{π}{12}$,0)B.(-$\frac{π}{12}$,$\frac{5}{4}$)C.(-$\frac{5π}{12}$,0)D.($\frac{5}{6}$π,$\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三棱锥P-ABC的四个顶点均在同一个球面上,底面△ABC满足BA=BC=$\sqrt{6}$,$∠ABC=\frac{π}{2}$,若该三棱锥体积的最大值为3,则其外接球的体积为(  )
A.B.16πC.$\frac{16}{3}$πD.$\frac{32}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$|{\overrightarrow a}|=2,\overrightarrow b=({\sqrt{2},\sqrt{2}}),\overrightarrow a•({\overrightarrow b-\overrightarrow a})+2=0$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.四棱锥P-ABCD,侧面PCD为边长为2的正三角形,底面ABCD为对角线互相垂直的等腰梯形,M为AD的中点,$PO=\sqrt{2}$. 
(Ⅰ)求证:PM⊥BC;
(Ⅱ)若△PAB的面积为$\frac{{\sqrt{5}}}{2}$,求三棱锥C-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若命题p:已知0<a<1,?x<0,ax>1,则¬p为(  )
A.已知a>1,?x>0,ax≤1B.$已知0<a<1,?{x_0}<0,{a^{x_0}}≤1$
C.$已知0<a<1,?{x_0}≥0,{a^{x_0}}≤1$D.已知a>1,?x>0,ax≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=2,$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某学校有5个班级的同学一起到某工厂参加社会实践活动,该工厂5个不同的车间供学生选择,每个班级任选一个车间进行时间学习,则恰有2个班级选择甲车间,1个班级选择乙车间的方案有270种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足约束条件$\left\{\begin{array}{l}x+y-5≤0\\ y≥x+1\\ x≥0\end{array}\right.$,则目标函数z=2x+y-1的最大值是6.

查看答案和解析>>

同步练习册答案